

Town of Waynesville, NC Board of Aldermen Regular Meeting

Town Hall, 9 South Main Street, Waynesville, NC 28786

Date: June 22, 2021 Time: 6:00 p.m.

The agenda and all related documentation may be accessed electronically at www.waynesvillenc.gov. Click on "Government/Mayor & Board" to download materials for town board meetings.

Consider the environment ◆ Conserve resources ◆ Print only when necessary

The Town of Waynesville provides accessible facilities, programs, and services for all people, in compliance with the Americans with Disabilities Act (ADA). Should you need assistance or accommodation for this meeting, please contact the Town Clerk at:

(828) 452-2491 eward@waynesvillenc.gov

- A. CALL TO ORDER Mayor Gary Caldwell
 - 1. Welcome/Calendar/Announcements
- B. PUBLIC COMMENT
- C. CONSENT AGENDA:

All items below are routine by the Board of Aldermen and will be enacted by one motion. There will be no separate discussion on these items unless a Board member so requests. In which event, the item will be removed from the Consent Agenda and considered with other items listed in the Regular Agenda.

- i. Adoption of minutes of the June 3rd Special Called meeting
- ii. Approval of Special Event Permits –
 Pig Pickin Back to School Bash First United Methodist Church
 Apple Harvest Festival
- D. PRESENTATION
- 2. Presentation of 2 Hero Awards
 - Police Chief David Adams, Fire Chief Joey Webb, and Haywood County EMS Director Travis Donaldson
- E. PUBLIC HEARING
- 3. Public Hearing for the 2021/2022 proposed budget
- 4. Text Amendments to the Land Development Standards for compliance with NCGS 160D
 - Olga Grooman, Attorney Anna Stearns

<u>Motion</u>: 1) To find that the updates to the Land Development Standards are consistent with the 2035 Comprehensive Land Use Plan.

<u>Motion</u>: 2) To find that the 160D updates are in the public interest because they bring the Land Development Standards in compliance with the new law.

<u>Motion</u>: 3) To adopt the attached text amendments to Land Development Standards as presented (or as amended).

- 5. Public Hearing for June 22, 2021 to consider additional changes to the Town of Waynesville Code of Ordinances for compliance with NCGS 160D.
 - Olga Grooman, Attorney Anna Stearns

<u>Motion</u>: To adopt the attached text amendments to the Town Ordinance as presented (or as amended).

- F. NEW BUSINESS
- 6. <u>Contract for Interim Town Attorney Ron Sneed</u>

Motion: To approve the contract

- 7. <u>Appointment of a Town of Waynesville Representative to the Haywood County Planning Board.</u>
 - Elizabeth Teague, Development Services Director

<u>Motion</u>: To appoint Ginger Hain as the Town's representative to the Haywood County Planning Board.

- 8. <u>Audit Proposal</u>
 - Autumn Lyvers, Finance Director

<u>Motion</u>: To approve the audit proposal and authorize the Mayor to sign the Contract to Audit Accounts.

- 9. <u>Budget amendment for rehabilitation of "Old Haywood County Hospital"</u>
 (Brookmont Lofts)
 - Autumn Lyvers, Finance Director

Motion: To approve the budget amendment as presented.

- 10. <u>Grant Project Ordinance establishing a Special Revenue Fund to account for grant revenues and related expenditures, including funds to be received under the American Rescue Plan Act of 2021 (ARP).</u>
 - Autumn Lyvers, Finance Director

<u>Motion</u>: To adopt the attached Grant Project Ordinance 1) authorizing the Finance Director to set up a special revenue fund to account for multiyear grant activity and 2) appropriating \$973,000 of ARP funds for expenditures outlined above

- 11. Reimbursement Resolution for Fire Station #2.1 associated costs
 - Rob Hites, Town Manager

<u>Motion</u>: To adopt the pre-payment resolution

- 12. Refinancing of USDA and BB&T Loan including purchase of fire station land
 - Town Manager Rob Hites

<u>Motion</u>: To request Bob Jessup and the staff to draft an RFP to be sent out to lending institutions and determine if refinancing the debt would be advantageous to the Town.

- 13. Approve purchase of 3.6 acres of property located at Mosaic Place
 - Rob Hites, Town Manager

<u>Motion</u>: To Approve the purchase of the 3.67 site located a 33 Mosaic Drive for a purchase price of \$405,000 dollars and to appropriate the funds from the General Fund Balance. (The additional \$5,000 is intended to cover closing costs, attorney's fees, etc.)

- 14. Manager's Report
 - Town Manager Rob Hites
- 15. <u>Town Attorney Report</u>
 - Interim Town Attorney Ron Sneed
- G. COMMUNICATIONS FROM THE MAYOR AND BOARD
- 16. <u>Board discussion concerning adjustments to the Downtown Municipal Service District</u>
 - Alderman Anthony Sutton
- H. OTHER BUSINESS
- G. CLOSED SESSION

<u>Motion</u>: To enter into Closed Session in accordance with North Carolina General Statute 143-318.11 (3) (4) to consult with the Interim Town Attorney to preserve attorney/client privilege and to discuss matters relating to the relocation or expansion of an industry or business.

I. ADJOURN

MINUTES OF THE TOWN OF WAYNESVILLE BOARD OF ALDERMEN Special Called Meeting June 3, 2021

THE WAYNESVILLE BOARD OF ALDERMEN held a special meeting on Thursday June 3, 2021 at 10:00 a.m. in the Town Hall Board Room located at 9 South Main Street Waynesville, NC.

A. CALL TO ORDER

Mayor Gary Caldwell called the meeting to order at 10:05 am with the following members present:

Mayor Gary Caldwell
Mayor Pro Tem Julia Freeman
Alderman Anthony Sutton
Alderman Jon Feichter
Alderman Chuck Dickson

The following staff members were present:

Rob Hites, Town Manager
Jesse Fowler, Assistant Town Manager
Eddie Ward, Town Clerk
Autumn Lyvers, Finance Director
Rhett Langston, Recreation Director
Joey Webb, Fire Chief
David Adams Police Chief
Donald Hummel, Facilities/Athletic Manager

The following media representative was present:

Becky Johnson, The Mountaineer Vickie Hyatt, The Mountaineer

A. <u>Call to Order/Welcome</u>

Mayor Gary Caldwell welcomed everyone and reminded everyone in attendance that Town business should not be conducted on social media.

Town Manager Rob Hites asked Autumn Lyvers, Finance Director, to present the Board with an overview of the proposed Fiscal Year 2021/2022 annual Budget.

Ms. Lyvers explained that the total proposed operating budget for FY22 is \$35,241,007.00 which is about 2.2 million over last year's budget, with the increase being in the General Fund and the Electric Fund. Because it is a reappraisal year, the Town is statutorily required to calculate our

Town of Waynesville Special Called Meeting June 3, 2021 revenue neutral rate, 41.27, which is the tax rate that would keep tax rates at the same level. To increase revenues for the Town the proposed tax rate is 45.42. Ms. Lyvers gave an example of a property valued \$250,000.00 at the current rate, and the revenue neutral the property would be valued at \$312,500.00 with an increase of \$50.44. The proposed tax rate would increase taxes in the amount of \$180.14.

The next revenue source is sales tax. The Town is seeing an increase of 8% -20% of growth each month from the same time the prior year. She said there were several drivers behind the increase including stimulus relief, unemployment assistance, online purchases, and our location being a tourist town. The proposed budget for the FY 2021/2022 is \$3.5 million including a 4% growth estimate over the current year. Ms. Lyvers propose a conservative growth estimate of 4% over current year actuals/estimates.

In the general fund balance the proposed appropriation is \$1,390,714.00. She is suggesting that a portion of this money be used for one-time expenditures such as capital, information technology, and non-capital equipment that payment is not recurring. Expenditures from the general fund show an increase in personnel and fringe benefits with an increase of 7.5% because of the mandated state retirement increase, health insurance, and proposed pay study increases phase one for \$190,000.00 and phase two for \$250,000.00. Also included is career track at \$218,460.00 and Fire Department part time employees \$126,958.00.

The operating expenditures includes Town of Waynesville Task Force for Homelessness, new recycling containers, cemetery software, police vests, Recreation Software upgrade, and First Due software for the Fire Department. Ms. Lyvers said that Special Appropriations had been increased to \$62,184 which was the second highest expenditure from the General Fund. \$495,000.00 has been budgeted from Capital Outlay for the purchase of land for the Fire Department.

In the Water Fund the proposed budget is just above 3.5 million and there is a 2% decrease from the current year's budget due to some debt service that was paid off. She said there will be no increase in rates or fees. The projected available fund balance is about \$2,000,000.00 at the end of June. The budget for the Sewer fund is over 3.8 million which is an increase of 9% over last year's budget. The increase is because of a loan processing payment that will have to be paid as part of the ongoing Waste-Water Treatment Plant project. There is a 10% increase in the sewer rates which is part of the multi-year increase to pay the debt of the project. Ms. Lyvers said the electric fund is budgeted at just over 10.7 million, which in an increase of 6% over last year. This increase is due to capital projects, and there is no requested change in rates.

Alderman Anthony Sutton said he proposed that the \$15.00 vehicle tax should be dropped for reimbursement of the recycle containers. There was much discussion concerning money for street maintenance how it would zeros out with the recycle containers. Alderman Jon Feichter stated he wanted to make sure that the money would be dedicated to streets and sidewalks.

Alderman Chuck Dickson said that he agreed with eliminating the vehicle tax and reduce the tax rate to 41¢. He said we must remember who we represent, and this was not the year to be increasing taxes when the Town is getting so much money in. The Town of Waynesville should set the standard because the Town is in good shape and could afford to do it. He gave several suggestions on saving money and consolidating loans. One of the suggestions was to eliminate monies to non-profits that are not specific to the Town. By doing this, Alderman Dickson said the Town could have a revenue neutral tax rate, and that tax rate could be lowered. He reminded the Board of the debts that were going to be paid off soon and how that would affect the budget.

Alderman Sutton stated he felt that the cost of providing services in the Town, and bringing employees pay up to the minimum of what other towns are paying is very important.

Alderwoman Julia Freeman said that with the rising cost of everything including fuel and building materials, this is not the time to remain neutral in our budget. She said this budget looks fine right now, but could change at any time in the future, and the Town needs to be prepared for things that might arise.

Mayor Caldwell added that the Town was looking at new police cars and fire trucks, and we need the financial stability to back up these purchases and provide services that are up to standard. Alderman Jon Feichter stated that he felt this budget would help ease some burdens on the tax payers, and that we need to be aware of what the future might bring and that the economic situation could be drastically different than what it is now. He expressed concern that there would be risk going forward with the lower rate. He suggested going lower than the 45.7 tax rate, but not down to 41¢.

Manager Hites told the Board that he would look at the items that Alderman Dickson had mentioned and compare how much money could be saved. He said he could report findings at the June 8, 2021 regular Board meeting before the Budget Public Hearing.

Alderman Feichter had questions concerning money allocated for sidewalks and repair. He asked if more money could be used for sidewalks in Allens Creek area. Another item he questioned is the audio/visual equipment in the Board room. Assistant Town Manager Jesse Fowler said he had received two quotes for the equipment. He explained the costs, pros, and cons of each quote. Assistant Manager Fowler told the Board that he had a better understanding of what the Board wanted, he would like to get at least one more quote and then place it on the Board Agenda for approval.

Mayor Caldwell spoke in defense of keeping the Special Appropriations for non-profits. He said that most of the non-profit organizations in Waynesville have struggled because of COVID-19 this year.

Alderman Feichter said he felt pride in allocating monies to the non-profit organizations, and it was a source of pride because Waynesville was the only Town in Haywood County that gives.

Alderman Dickson proposed that grants for electrical, water or sewer be looked at as part of the Special Appropriations. If there are utility grants that can be made, it saves the Town money. After much discussion, Assistant Manager Fowler asked that each Board member complete the worksheet for the appropriations, and he will tally the totals.

The meeting broke for lunch at 11:45 am.

The meeting resumed at 12:30 pm.

Alderman Dickson asked that distributions from the American Rescue Plan be discussed. He said that the Tow would be receiving approximately three million dollars within the next three years. One and a half million must be spent on water, sewer, homelessness, and other things to address the COVID-19 crisis. There was much discussion about line items in the budget that can be covered also.

Mayor Caldwell asked about the findings on the soil testing on the property for the fire station. Manager Hites said that they had received an informal report and it had indicated some asbestos and other chemicals in the soil, but they do not meet the guidelines for being toxic. The site will be certified for a fire station which provides temporary housing.

There was discussion concerning a pavilion at the skate park and dog park. Assistant Manager Fowler said there was only one place the pavilion could be built but that it was in the flood plain. He estimated the cost for the pavilion would be between \$36,000.00 - \$39,000.00.

Alderman Feichter said that at the last Board meeting Helping Hands had requested ARP funds for housing for unsheltered folks. He said he would like to ask that the Board fund option 1 on the proposal from Helping Hands which is \$35,000.00 a year for two years which covers 500 private overnight stays, and the total being \$70,000.00 for two years and the money would be disbursed quarterly.

A motion was made by Alderman Jon Feichter, seconded by Alderman Anthony Sutton, to fund money from the ARP to Haywood Helping Hands \$35,000.00 for the first year, to be disbursed quarterly, with a report from Helping Hands to the Board. The second year will be a lump sum of 35,000.00 for a total of \$70,000.0 for the two years. The motion carried unanimously.

A motion was Made by Alderman Chuck Dickson, seconded by Alderman Anthony Sutton to fund from the ARP money \$100.00 gift card if legal or if not, from the General Fund to each employee who has been completely vaccinated for the COVID-19. The motion carried unanimously.

CLOSED SESSION

A motion was made by Alderman Anthony Sutton, seconded by Alderman Jon Feichter, to enter closed session at 12:58 pm. in accordance with NCGS §143-318.11(6) to hear or investigate a complaint, charge, or grievance by or against an individual public officer or employee. The motion carried unanimously.

The Board of Aldermen returned to open session at 2:03 and a motion was made by Alderman Chuck Dickson, seconded by Alderman Anthony Sutton to continue the meeting until Monday June 7, 2021 at 10:00 am. The motion carried unanimously.

A motion was made by Alderman Julia Freeman, seconded by Alderman Anthony Sutton, to reconvene the meeting at 10:00 am on Monday June 7, 2021.

At 10:02 on June 7, 2021, a motion was made by Mayor Gary Caldwell, seconded by Alderman Anthony Sutton to enter closed session. The motion carried unanimously.

The Board returned to open session at 10:54. Alderman Julia Freeman made a motion, seconded by Alderman Anthony Sutton to terminate the Town's contract with Bill Cannon. The motion carried unanimously.

At 10:55, Alderman Jon Feichter made a motion, seconded by Alderman Anthony Sutton to adjourn the meeting The motion carried unanimously.

ATTEST:	
	Gary Caldwell, Mayor
Robert W. Hites, Town Manager	
Eddie Ward, Town Clerk	

Meeting Date: June 22, 2021

SUBJECT: Special Event Permits

AGENDA INFORMATION:

Agenda Location: Consent Agenda

Item Number:

Department: Administration

Contact: Jesse Fowler, Assistant Town Manager **Presenter:** Jesse Fowler, Assistant Town Manager

BRIEF SUMMARY:

- 1. *Pig Pickin' Back to School Bash (August 22, 2021)*: This event will be combining the First United Methodist Church's beginning of summer event with their end of summer event. This event will require a minor road closure of Academy street between the intersections of Haywood and Tate from 2pm to 9pm on August 22, 2021.
- 2. Apple Harvest Festival (October 16, 2021): This year will be the 34th year that the Town of Waynesville has hosted the Apple Harvest Festival. The streets will be filled with almost 200 arts and craft booths, food concessions, music, cloggers and more. The event is owned, operated, and organized by the Haywood Chamber of Commerce. Current plans are to limit the number of vendors by 50% and space booths along the sides of the streets with a minimum of six feet distance between them which is the same setup as 2020. There is consideration to allow additional booths according to current guidelines for COVID-19. This event will require the closure of Main Street, Depot Street, and Church Street from 9:00am to 6:30pm on October 16, 2021.

MOTION FOR CONSIDERATION:

FUNDING SOURCE/IMPACT:

ATTACHMENTS:

- 1. Pig Pickin' Back to School Bash Special Event Permit
- 2. Apple Harvest festival Special Event Permit and Insurance Documentation

Application for Special Events Permit

I. Genera	Information	on			
EVENT NAME:		Pig Pickin'/Back to School Bash			
EVENT DATE(S):		August 22, 2021			
		Note: If event is more than three days in duration, and not in the public right-of-way, you will also need a temporary event permit. Contact the Waynesville Police Dept. at 828-456-5363 for more information.			
LOCATION		First United Methodist Church parking lot and outdoor property			
IF THIS EVENT IS OR ROAD RACE	A PARADE	Please provide a full route description and map			
SET-UP TIME (STA	ART/END):	2pm-4pm			
EVENT HOURS:		4pm-8pm			
DISMANTLE HOUR (START/END):	RS	8pm-9pm			
ESTIMATED ATTE	NDANCE:	250 people			
BASIS ON WHICH MADE:	THIS ESTIM	Previous events like this			
COMPREHENSIVE INSURANCE REQI					
II. Applicant and	d Sponsori	ing Organization Information			
SPONSORING OR NAME:	GANIZATIOI	N First United Methodist Church, Waynesville			
ARE YOU A NON F		If yes, Place of Yes X are you 501c(3) X 501c(6) Worship X			
APPLICANT NAME:	Becky Br	rown TITLE: Associate Pastor			
ADDRESS:	566 S. H	aywood St CITY: Waynesville STATE: NC ZIP 28786			
PHONE:	828-456- 9475	. FAX#: <u>bbrown@fumc-waynesville.com</u>			
ON-SITE CONTACT:	Michael Blackburn TITLE: Director of Ministries				
ADDRESS:	566 S. H	aywood St, Waynesville, NC 28786			
PHONE #:	828-456- 9475	CELL PHONE #: _828-226-3363			

III.		Description of Event					
playing severa combir	g mus I year ning t	nave food trucks parked in the church parking lot, inflatables for children to play on, a DJ ic, and gathering for our church and community outdoors. We have done this event for s, usually in 2 parts (one at the beginning of summer, the other at the end). We are hem this year in one big event in August.					
IV.	Stree	et Closure Request (Attach map of the Street Closure)					
List any s	street(s) (or lanes of streets) requiring temporary street closure as a result of this event.					
Include s		ame(s) indicating beginning and endpoints of the closing, day, date and time of closing and reopening:					
1. Sunday		lemy Street (section between Haywood St and Tate St) Beginning at 2pm, ending at 9pm on ust 22, 2021.					
2.							
3.							
٧.	Even	t Details					
YES	NO						
	\boxtimes	Does the event involve the sale or use of alcoholic beverages?					
		If yes, has the ABC permit been obtained? Yes \(\sqrt{N} \) \(\sqrt{N} \) \(Please provide a graphic of the area where alcoholic					
		beverages will be purchased or consumed (i.e. beer garden layout)					
	\boxtimes	Does the event involve the sale of food?					
		If "YES", has the health department been notified? Have you applied for a temporary permit?					
	\boxtimes	Does the event involve the sale of non-food items? If "YES" have you applied for a privilege license?					
		Will there be musical entertainment at your event? IF "YES" provide the following information:					
		Number of Number of					
		Note: If amplification is used, you will be required to perform a pretest for compliance with the noise ordinance. Do you plan to use an existing occupied building? Address FUMC 566 S Haywood St, Waynesville, NC					
		28786					
	\boxtimes	Do you plan to use an existing vacant building? Address					
\boxtimes		Will there be any tents or canopies in the proposed event site? Please provide the following information:					
		Approx. Number of Tents: 4 Will any tent exceed 400 sq. feet in area? ☑ NO ☐ YES					
	\boxtimes	Does the event involve the use of pyrotechnics ? Explain					
		Will you provide portable toilets for the general public attending your event? IF SO, how many and where will they be located? 2, in the church parking lot					
	\boxtimes	Will you require electrical hookup for the event? Generators?					

Will inflatable parade balloons be used for the event? Provide details if necessary.

Will admission fees be charged to attend this event? If "YES", provide the amount(s) of all tickets.

Will fees be charged to vendors to participate in this event? If "YES", please provide the amount(s).

Will signs and/or banners be displayed as part of the event? If "YES" have you applied for a sign permit? _____

Will you require access to water for the event? Explain _____

 \boxtimes

 \boxtimes

 \boxtimes

 \boxtimes

 \boxtimes

How will parking be accommodated for this event? There is ample parking in the church parking lots for the event. There is ample parking in the church parking lots for the event. There is ample parking in the church parking lots for the event. 2. You may be required to provide a shuttle if the event places undue demands on surrounding parking areas. How will trash be contained and removed during and after the event? We will have our own trash cans located throughout our campus, and we will discard it ourselves.

Volunteers: Will you require Civilian Police Volunteers for

Apply for this permit at least 60 days prior to your special event. (30 days for a neighborhood street closing)

no

Return to:

Jesse Fowler, Assistant Town Manager Town of Waynesville 16 S. Main Street, P.O. Box 100, Waynesville, NC 28786

Telephone: (828) 452-2491 Fax No.: (828) 456-2000

Email Address: jfowler@waynesvillenc.gov

VIII. Special Information for Applicants

- * Do not announce, advertise or promote your event until you have an approved and signed permit.
- * You will be required to notify property owners affected by the event at the time a special events permit is issued with a copy of any correspondence provided to the Town for the permit file.
- * Only chalk may be used on streets no permanent paint. No permanent alterations to the street will be permitted.
- * The Town has an ordinance prohibiting the use of tobacco and e-cigarettes in the business districts and all parks of the Town. The Applicant is to communicate this information to all vendors and participants. Permanent signs are in place in these districts and parks.
- * The Town has an ordinance allowing animals at festivals. Any incidents should be reported to the Police Department.
- * The Applicant shall be responsible for hiring and paying off-duty law enforcement officers, or reimbursing the Town for the costs of providing on-duty law enforcement officers, to appropriately police street closures. For festivals, the Applicant shall be additionally responsible for hiring and paying off-duty law enforcement officers, or reimbursing the Town for the costs of providing city staff, including but not limited to: on-duty law enforcement officers, to provide internal festival security and for hiring and paying necessary emergency medical technicians.
- * The Assistant Town Manager, in consultation with the Waynesville Police Department, shall determine the number of officers needed to appropriately monitor street closures and for internal security, and with the Fire Department to determine the number of emergency medical technicians needed, and the time when such services shall commence and end.

FOR INTERNAL USE ONLY: Application received: Application approved: Application denied:

Application for Special Events Permit

I. Genera	Information						
EVENT NAME:		Apple Harve	est Festival				
EVENT DATE(S):		Saturday, October 16,2021					
		ote: If event is more mporary event perm					
LOCATION		Downtown N	Main Street				
IF THIS EVENT IS OR ROAD RACE		ease provide a fu	Il route descriptio	n and map			
SET-UP TIME (STA	ART/END): Fr	riday, October 1	5, 2021				
EVENT HOURS:	9:	00-5:00					
DISMANTLE HOUF	RS	00-6:30					
ESTIMATED ATTE		0,000					
BASIS ON WHICH MADE:	THIS ESTIMATE		e Department E	stimates			
COMPREHENSIVE INSURANCE REQI	-		e attach proof of	insurance (oı	applicable rider).	
II. Applicant and	d Sponsoring (Organization Info	ormation				
SPONSORING OR NAME:	GANIZATION	Haywood Cha	mber of Comm	erce			
ARE YOU A NON F	PROFIT No	Yes	If yes, are you	501c(3)	501c(6)		ce of rship
APPLICANT NAME:	CeCe Hipps			TIT	гье: Presi	dent	
ADDRESS:	28 Walnut Street CITY: Waynesville STATE: NC Z				ZIP28786		
PHONE:	828.768.1 430	FAX#:		EMAIL:	chipps@l	haywoodchar	nber.com
ON-SITE CONTACT:	CeCe H			=		resident	
ADDRESS:	28 Walnut St	t; Waynesville, N	NC 28786				
PHONE #:	828. 456.3021	-	828.768.1430	EMAIL:	chipps@l	haywoodchar	mber.com

III. Brief Description of Event

The annual Apple Festival is in its 34th year of celebrating everything apples in Downtown Waynesville. The streets are filled with almost 200 arts and craft booths, food concessions, music, cloggers and more. The event is owned, operated and organized by the Haywood Chamber of Commerce. Current plans are to limit the number of vendors by 50% and space booths along the sides of the streets with a minimum of six feet distance between them which is the same setup as 2020. There is consideration to allow additional booths according to current guide lines for COVID-19.

IV. Street Closure Request (Attach map of the Street Closure)

List any street(s) (or lanes of streets) requiring temporary street closure as a result of this event.

Include street name(s) indicating beginning and endpoints of the closing, day, date and time of closing and reopening:

1. Main Street, Church Street, Depot Street, Main Street

٧.	Even	t Details
YES	NO	
x□		Does the event involve the sale or use of alcoholic beverages?
		If yes, has the ABC permit been obtained? Yes \(\square\) No x\(\square\) Please provide a graphic of the area where alcoholic beverages will be purchased or consumed (i.e. beer garden layout)
х□		Does the event involve the sale of food ?YES (Food Vendors not Chamber)
		If "YES", has the health department been notified?x Have you applied for a temporary permit?NO
x□		Does the event involve the sale of non-food items? If "YES" have you applied for a privilege license?NO
x□		Will there be musical entertainment at your event? IF "YES" provide the following information:
		Number of Stages: 1 Number of Band(s): 4-5 Amplification?
		Note: If amplification is used, you will be required to perform a pretest for compliance with the noise ordinance.
	x□	Do you plan to use an existing occupied building? Address
	x□	Do you plan to use an existing vacant building? Address
ш	^⊔	
х□		Will there be any tents or canopies in the proposed event site? Please provide the following information:
		Approx. Number of Tents:100 Will any tent exceed 400 sq. feet in area? x□ NO □ YES
	х□	Does the event involve the use of pyrotechnics ? Explain
x□		Will you provide portable toilets for the general public attending your event? IF SO, how many and where will they be located? 10
	х□	Will you require electrical hookup for the event? Generators?yes
	х□	Will you require access to water for the event? Explain
	х□	Will admission fees be charged to attend this event? If "YES", provide the amount(s) of all tickets. Will fees be charged to vendors to participate in this event? If "YES", please provide the amount(s).
x□		10x12 -\$200; 12x20 \$350;10x20 Food \$275;12x20 \$500
x□		Will signs and/or banners be displayed as part of the event? If "YES" have you applied for a sign permit? _N
	х□	Will inflatable parade balloons be used for the event? Provide details if necessary.

VI. Additional Questions						
How will parking be accommodated for this event?	Parking locations are identified on the website, TOW places a sign with directions to parking garage					
Notes: 1. Parking and buildings involved may be examined for ADA compliance.	You may be required to provide a shuttle if the event places undue demands on surrounding parking areas.					
How will trash be contained and removed during and after the event?	2 Dumpsters are placed by TOW. ROTC volunteers collect trash on streets and drop off at dumpsters. The Chamber makes a donation to ROTC					

Volunteers: Will you require Civilian Police Volunteers for your event? YES

Apply for this permit at least 60 days prior to your special event. (30 days for a neighborhood street closing)

Return to:

Jesse Fowler, Assistant Town Manager Town of Waynesville 16 S. Main Street, P.O. Box 100, Waynesville, NC 28786

Telephone: (828) 452-2491 Fax No.: (828) 456-2000

Email Address: jfowler@waynesvillenc.gov

VIII. Special Information for Applicants

- * Do not announce, advertise or promote your event until you have an approved and signed permit.
- * You will be required to notify property owners affected by the event at the time a special events permit is issued with a copy of any correspondence provided to the Town for the permit file.
- * Only chalk may be used on streets no permanent paint. No permanent alterations to the street will be permitted.
- * The Town has an ordinance prohibiting the use of tobacco and e-cigarettes in the business districts and all parks of the Town. The Applicant is to communicate this information to all vendors and participants. Permanent signs are in place in these districts and parks.
- * The Town has an ordinance allowing animals at festivals. Any incidents should be reported to the Police Department.
- * The Applicant shall be responsible for hiring and paying off-duty law enforcement officers, or reimbursing the Town for the costs of providing on-duty law enforcement officers, to appropriately police street closures. For festivals, the Applicant shall be additionally responsible for hiring and paying off-duty law enforcement officers, or reimbursing the Town for the costs of providing city staff, including but not limited to: on-duty law enforcement officers, to provide internal festival security and for hiring and paying necessary emergency medical technicians.
- * The Assistant Town Manager, in consultation with the Waynesville Police Department, shall determine the number of officers needed to appropriately monitor street closures and for internal security, and with the Fire Department to determine the number of emergency medical technicians needed, and the time when such services shall commence and end.

FOR INTERNAL USE ONLY: Application received: Application approved: Application denied:

Meeting Date: June 22, 2021

SUBJECT: Presentation of 2 Hero Awards

AGENDA INFORMATION:

Agenda Location: Presentations

Item Number: D2

Department: Police, Fire, Haywood Co. EMS

Contact: Police Chief David Adams & Fire Chief Joey Webb

Presenter: Police Chief David Adams, Fire Chief Joey Webb, and Haywood County EMS

Director Travis Donaldson

BRIEF SUMMARY:

Haylen Bradley and Conner Bridges, both 9 years of age, on separate occasions responded quickly in life or death situations in order to save the lives of others. Haylen Bradley observed her neighbor pinned underneath a vehicle and was able to alert others who were able to remove the vehicle. Conner Bridges found his grandfather unresponsive during a diabetic emergency and was able to contact 911 in order to save his life. Waynesville Police Chief David Adams, Waynesville Fire Chief Joey Webb, and Haywood County EMS Director Travis Donaldson will be presenting Hayden and conner with a plaque to honor their actions.

MOTION FOR CONSIDERATION:

FUNDING SOURCE/IMPACT:

ATTACHMENTS:

Meeting Date: June 22, 2021

SUBJECT: Public Hearing to consider public input on the 2021/2022 fiscal year budget

AGENDA INFORMATION:

Agenda Location: Public Hearing

Item Number:E3Department:Finance

Contact: Autumn Lyvers, Finance Director **Presenter:** Autumn Lyvers, Finance Director

BRIEF SUMMARY:

This is a public hearing to consider public input on the 2021/2022 fiscal year budget. The full proposed budget document can be vied online at the Town of Waynesville's webpage at waynesvillenc.gov.

MOTION FOR CONSIDERATION:

Motion to approve the proposed 2021/2022 fiscal year budget as presented or amended.

FUNDING SOURCE/IMPACT:

ATTACHMENTS:

Meeting Date: June 22, 2021

SUBJECT:

This is a Public Hearing to consider text amendments to the Land Development Standards for compliance with NCGS 160D.

AGENDA INFORMATION:

Agenda Location: New Business

Item Number: E4

Department: Development Services

Contact: Elizabeth Teague, Olga Grooman **Presenter:** Olga Grooman, Attorney Anna Stearns

BRIEF SUMMARY:

Chapter 160D of the North Carolina General Statutes (NCGS) clarify, consolidate, and reorganize city and county-enabling statutes related to development. These statutory guidelines are currently found in NCGS 160A which will be replaced by this new legislation. Changes to Waynesville's LDS include converting all references from "160A" to "160D," required conflict of interest language, changes in timeframes for permit validity and vested rights, and updating several definitions for consistency throughout the state. Several procedural updates are also proposed in order to align the Town's Land Development Standards with best practices suggested by the UNC School of Government's analysis of 160D. These amendments need to be incorporated into local development and zoning regulations by July 1, 2021, before the Chapter 160D statutes become effective on August 1, 2021.

MOTIONS FOR CONSIDERATION:

- 1. Motion to find that the updates to the Land Development Standards are consistent with the 2035 Comprehensive Land Use Plan.
- 2. Motion to find that the 160D updates are in the public interest because they bring the Land Development Standards in compliance with the new law.
- 3. Motion to adopt the attached text amendments to Land Development Standards as presented (or as amended).

FUNDING SOURCE/IMPACT:

N/A

ATTACHMENTS:

- 1. Staff Report
- 2. Draft Ordinance
- 3. Report from the Planning Board
- 4. Consistency Worksheet

Board of Aldermen Staff Report

Subject: NCGS 160D Land Development Standards (LDS) text amendments

Ordinance Section: Multiple Sections of Land Development Standards

Applicant: Staff initiated Text Amendment; Development Services Department

Meeting Date: June 22, 2021

Background:

Chapter 160D was adopted by the N.C. General Assembly in 2019 to consolidate city and county statutes and create a unified set of land development regulation statutes among all cities and counties in North Carolina. Local municipalities need to be in compliance with 160D by July 1st, 2021. The law will be enacted statewide on August 1st, 2021.

In developing the proposed text amendments, the Development Services Department followed State Statutes for 160 D and the guidelines and recommendations of the UNC School of Government:

- https://www.ncleg.gov/EnactedLegislation/Statutes/HTML/ByChapter/Chapter 160d.html
- https://www.sog.unc.edu/resources/microsites/planning-and-development-regulation/ch-160d-2019
- Lovelady, A. and Owens, D. (2020) <u>Chapter 160D: A New Land Use Law for North Carolina</u>, University of North Carolina, Chapel Hill.

Staff also participated in training and collaborative discussion through the North Carolina Planners' list serve and the NC Chapter of the American Planning Association. Legal guidance has been provided by Ron Sneed and Anna Stearns. Staff presentations on 160D were made on September 21, 2020, April 19, 2021, and the Town adopted *Waynesville 2035 Planning with Purpose, Comprehensive Land Use Plan*, on September 8, 2020 after several months of Planning Board review and public hearings. The Planning Board held a public hearing on May 26, 2021 and recommends adoption of the attached ordinance.

Staff Recommended Text Changes:

Text amendments include definitions, substitution of 160A references with relevant provisions from 160D, addition of the conflict of interest standards, updated performance guarantees section, revised permit terms and process types for different development projects in chapter 15, updated vested rights section, revised chapter 16 on violations and civil penalties, and replacement of protest petitions section with public comments to match the language and requirements of 160D.

Staff submits that the attached draft ordinance be recommended to the Board of Aldermen for adoption, with proposed changes to the current Land Development Standards provided in red.

Consistency with the 2035 Comprehensive Land Use Plan

160D-related changes are reasonable and in the public interest because they will keep the Town of Waynesville in compliance with the current General Statutes for land use planning and zoning, and clarify definitions and procedures which should aid in land use decisions. In so doing, these text amendments will assist the Town in carrying out the community vision statement of the 2035 Comprehensive Plan:

Waynesville will enable the growth of a vibrant, healthy, and successful community $-\underline{\text{true}}$ to our history, small town culture and heritage; $\underline{\text{responsive}}$ to the changing aspirations and needs of all our citizens; $\underline{\text{purposefully built}}$ on the principles of smart growth; $\underline{\text{mindful}}$ of the gift of our rivers and creeks, farmland and mountain vistas; and $\underline{\text{attentive}}$ to the opportunities presented in regional preservation, arts and education, economic development, and land use initiatives.

Staff also submits that the proposed text amendments to the LDS are consistent with the first goal of the 2035 Comprehensive Plan:

Goal 1: Continue to promote smart growth principles in land use planning and zoning.

- Create walkable and attractive neighborhoods and commercial centers.
- Encourage in-fill, mixed use, and context-sensitive development.
- Promote conservation design to preserve important natural resources. (And to)
- Reinforce the unique character of Waynesville.

Attachments

- 1. Draft Ordinance
- 2. Report from the Planning Board
- 3. Consistency Statement Worksheet.

Recommended Motions

- 1. Motion to find that updates to the Land Development Standards are consistent with the 2035 Comprehensive Land Use Plan.
- 2. Motion to find that the 160D updates are in the public interest because they are in compliance with the current law.
- 3. Motion to adopt the attached text amendments to Land Development Standards as presented.

ORDINANCE NO. 0-11-21

AN ORDINANCE AMENDING THE TEXT OF THE TOWN OF WAYNESVILLE LAND DEVELOPMENT STANDARDS

WHEREAS, the Town of Waynesville has the authority, pursuant to Part 3 of Article 19 of Chapter 160A, now Section III of Chapter 1 of 160D, of the North Carolina General Statutes, to adopt land development regulations, clarify such regulations, and may amend said regulations from time to time in the interest of the public health, safety and welfare; and

WHEREAS, the Town of Waynesville must comply with North Carolina General Statutes to maintain Land Development regulations comply with the most up to date version of State authorization statutes known as 160D by July 1, 2021.

WHEREAS, the Town of Waynesville Planning Board has reviewed the proposed text amendments to the Land Development Standards (LDS) and recommends that it is consistent with the 2035 Comprehensive Plan and that it is reasonable and in the public interest because:

- Compliance with 160D will continue to "promote smart growth in land use planning and zoning;" (Goal #1);
- It will keep the Town of Waynesville in compliance with General Statutes for land use planning and zoning; and

WHEREAS, the Board of Aldermen find this Ordinance is consistent with the Town's 2035 Comprehensive Plan and that it is reasonable and in the public interest to "make decisions about resources and land use in accordance with North Carolina General Statutes;" and

WHEREAS, after notice duly given, a public hearing was held on May 26, 2021 at a special called meeting of the Waynesville Planning Board, and on June 22, 2021 at the regularly scheduled meeting of the Board of Aldermen;

NOW, THEREFORE, BE IT ORDAINED BY THE BOARD OF ALDERMEN OF THE TOWN OF WAYNESVILLE, MEETING IN REGULAR SESSION ON _____AND WITH A MAJORITY OF THE BOARD MEMBERS VOTING IN THE AFFIRMATIVE, THE FOLLOWING:

That the Land Development Standards be amended as follows in compliance with statutory changes in N.C.G.S. 160D.

1. Amend Section 1.2 Authority as follows:

Specifically, principal authorization comes in the North Carolina General Statutes in Chapter 160A (Planning and Regulation of Development) 160D (Local Planning and Development Regulation).

2. Amend Section 1.5 Consistency with All Adopted Plans as follows:

In accordance with G.S. 160A 382 383 160D, all development plans shall be in conformance with all adopted plans (...).

3. Replace Section 2.1.1 and 2.1.2 Official Land Development Map as follows:

2.1.1 Official Land Development Map

- **A.** The Official Zoning Map of the Town of Waynesville shall be known as the Official Land Development Map.
- **B.** Each land development and overlay district shall be shown on the Official Land Development Map for the Town of Waynesville.
- C. The Official Land Development Map shall be maintained in the Waynesville Planning Department and a copy shall be kept on file with the Town Clerk. The Administrator shall separately maintain the digital files that comprise the map and record all map amendments in a separate metadata file.
- **D.** The Official Land Development Map, if printed or produced for dissemination shall show the effective date of this ordinance and bearing the words: "Official Land Development Map, Town of Waynesville, North Carolina."

2.1.2 Land Development Map as Part of Land Development Standards

The Official Land Development Map for the Town of Waynesville, and all district designations, boundaries, figures, letters and symbols shown on such maps are hereby declared to be a part of this chapter.

2.1.1 Official Land Development Map.

In accordance with 160D-105, the adopted zoning district boundaries and zoning overlays shall be shown on a map of the Town of Waynesville which shall be known as the Official Land Development Map, and such map is hereby incorporated into these Land Development Standards for the Town of Waynesville.

Zoning district maps and a copy of the currently effective version of any incorporated map shall be maintained for public inspection in the Waynesville Development Services Department.

The Official Land Development Map shall be maintained in the Waynesville Development Services Department and a copy shall be kept on file with the Town Clerk. Copies of the Official Land Development Map shall be provided upon request and, when certified by the town clerk in accordance with G.S. 160A-79 or G.S. 153A-50, shall be admissible into evidence and shall have the same force and effect as would the original map.

Zoning district boundaries are automatically amended to remain consistent with the incorporated map upon Board of Aldermen approval of zoning map amendments.

2.1.2 Adoption of Other Maps by Reference.

North Carolina flood insurance rate maps, watershed boundary maps, and state surface water maps officially adopted and promulgated by State and federal agencies are hereby adopted and incorporated into these Land Development Standards in their most recently adopted version by reference.

The Town of Waynesville Municipal Services District map, Powell Bill Map, Comprehensive Pedestrian Plan, Parks and Recreation Master Plan, and local and federally designated historic districts and landmarks are hereby adopted and incorporated into these Land Development Standards in their most recently adopted version by reference.

4. Amend Section 2.6.1 Historic Overlay District as follows:

C. Development Standards.

1. Historic Overlay District- General Requirements

b. When the provisions of this section and the guidelines standards and regulations established for each individual HOD, impose higher standards than are required for that land development district, the provisions of this section and all the applicable guidelines standards and regulations shall govern.

5. Amend Section 2.7 Conditional Districts as follows:

Conditional districts are districts with conditions voluntarily added by the applicant and approved in a legislative procedure by the Board of Aldermen in accordance with G.S. 160A-382 160D.

6. Amend Section 5.2.2 Applicability and Administration as follows:

Adopted Plans or Historic Guidelines Standards to Take Precedence.

Where specific architectural elements are required as part of an adopted plan or associated with local historic guidelines standards, these shall take precedence over the building design requirements of this chapter.

7. <u>Amend Section 6.12.2 Types of Guarantees as follows and separate other information into new Section as 6.12.3:</u>

6.12.1 General.

C. Terms: The financial guarantee will be renewable, in one year terms, until 50 percent of building permits have been issued within the applicable phase. When 50 percent of building permits have been issued in a particular phase, the developer may petition the town to take over ownership and maintenance of the streets and infrastructure within the phase.

C. Duration: The duration of the performance guarantee shall initially be one year, unless the developer determines that the scope of work for the required improvements necessitates a longer duration. In the case of a bonded obligation, the completion date shall be set one year from the

date the bond is issued, unless the developer determines that the scope of work for the required improvements necessitates a longer duration (160D-804.1(1a)).

D. Extension. If the improvements are not completed before the guarantee is likely to expire, the Administrator may extend the performance guarantee, or the developer may provide a new performance guarantee, for an additional period. An extension under this section shall only be for a duration necessary to complete the required improvements. If the extension is granted, the amount of the renewed performance guarantee shall not exceed 125% of the improvements yet to be completed. The new amount must be reduced for improvements that have already been completed (160D-804.1(1b)).

6.12.2 Types of Guarantees.

A. Surety Performance Bond:

- 3. The duration of the bond shall be until such time as the improvements are accepted by the Board of Aldermen, but shall not exceed two (2) years from date of request.
- 4. Extensions past two (2) years may be granted by the Administrator at the request of the developer subject to new cost estimates and additional guarantees possibly being required.

B. Letter of Credit:

- 1. The developer may obtain a letter of credit issued by any financial institution licensed to do business in North Carolina.
- 2. A satisfactory, irrevocable letter of credit as approved by the town attorney and deposited with the town clerk shall be submitted, containing the following information:
 - a. Indication that the Town is the sole beneficiary,
 - b. The amount (of the letter of credit) as approved,
 - c. Account number and/or credit number that drafts may be drawn on,
 - d. List of improvements that shall be built that the letter is guaranteeing,
 - e. Terms in which the town may make drafts on the account,
 - f. Expiration date of the letter.

B. C. Cash or Equivalent Security:

(...)

6.12.3 Relevant Provisions:

C.A. Default by Developer:

(...)

D.B. Release of Guarantee:

(...)

E.C. Warranty Against Defects:

(...)

D. Coverage:

The performance guarantee shall be used only for the completion of the required improvements. It shall not be used for repairs or maintenance after initial completion (160D-804.1(4)). If the project has common areas that require maintenance, the developer or the entity to which the property has been officially transferred is responsible for maintaining these common areas.

E. Exclusion:

Performance guarantees associated with erosion control and stormwater control are not subject to the provisions of this section.

5. Amend Section 12.3.1 Statutory Authorizations, Findings of Fact, Purpose and Objectives as follows:

The Legislature of the State of North Carolina has in Part 6, Article 21 of Chapter 143; Parts 3, 5, and 8 of Article 19 of Chapter 160A; Articles 7, 9, 11, and 13 of Chapter 160D and the Article 8 of Chapter 160A of the North Carolina General Statutes, delegated to local governmental units the responsibility to adopt regulations (...).

6. <u>Amend Section 14.3.2 Planning Board Membership and Quorum as follows:</u>

(...) one 1 or more members shall be appointed by the Haywood County Commissioners as set forth in G.S. 160A-362 G.S. 160D-307 to provide for proportional representation of residents within the Extraterritorial Jurisdiction.

7. Amend Section 14.4.2 Board of Adjustment Membership and Quorum as follows:

The Board shall not pass upon any decision relating to an appeal from a decision, order, requirement, or determination of town officials or an application for a variance or conditional use permit special use permit when there are less than four-fifths (4/5) of the board members with jurisdictional authority present.

8. Amend Section 14.5.1 Historic Preservation Powers and Duties as follows:

The Historic Preservation Commission of Waynesville shall have the following powers and duties to be carried out in accordance with the terms of this ordinance of G.S. Chapter 160A, Article 19, Part 3C G.S. Chapter 160D, Article 9, Part 4 (...).

9. <u>Insert new section to 14.6 Meetings and General Procedures:</u>

14.6.7 Conflict of Interest Policy.

- A. Governing Board. A governing board member shall not vote on any legislative decision regarding a development regulation adopted pursuant to this Chapter where the outcome of the matter being considered is reasonably likely to have a direct, substantial, and readily identifiable financial impact on the member. A governing board member shall not vote on any zoning amendment if the landowner of the property subject to a rezoning petition or the applicant for a text amendment is a person with whom the member has a close familial, business, or other associational relationship.
- B. Appointed Boards. Members of appointed boards shall not vote on any advisory or legislative decision regarding a development regulation adopted pursuant to this Chapter where the outcome of the matter being considered is reasonably likely to have a direct, substantial, and readily identifiable financial impact on the member. An appointed board member shall not vote on any zoning amendment if the landowner of the property subject to a rezoning petition or the applicant for a text amendment is a person with whom the member has a close familial, business, or other associational relationship.
- C. Administrative Staff. No staff member shall make a final decision on an administrative decision required by this Chapter if the outcome of that decision would have a direct, substantial, and readily identifiable financial impact on the staff member or if the applicant or other person subject to that decision is a person with whom the staff member has a close familial, business, or other associational relationship. If a staff member has a conflict of interest under this section, the decision shall be assigned to the supervisor of the staff person or such other staff person as may be designated by the development regulation or other ordinance.
- D. No staff member shall be financially interested or employed by a business that is financially interested in a development subject to regulation under this Chapter unless the staff member is the owner of the land or building involved. No staff member or other individual or an employee of a company contracting with a local government to provide staff support shall engage in any work that is inconsistent with his or her duties or with the interest of the local government, as determined by the local government.
- E. Quasi-Judicial Decisions. A member of any board exercising quasi-judicial functions pursuant to this Chapter shall not participate in or vote on any quasi-judicial matter in a manner that would violate affected persons' constitutional rights to an impartial decision maker. Impermissible violations of due process include, but are not limited to, a member having a fixed opinion prior to hearing the matter that is not susceptible to change, undisclosed ex parte communications, a close familial, business, or other associational relationship with an affected person, or a financial interest in the outcome of the matter.
- F. Resolution of Objection. If an objection is raised to a board member's participation at or prior to the hearing or vote on a particular matter and that member does not recuse himself or herself, the remaining members of the board shall by majority vote rule on the objection.
- G. Familial Relationship. For purposes of this section, a "close familial relationship" means a spouse, parent, child, brother, sister, grandparent, or grandchild. The term includes the step, half, and in-law relationships. (2019-111, s. 2.4.)

10. Amend Section 15.2.3 as follows:

15.2.3 Permit/Process Type

Permit/ Process Type	Section	Permit/Process Type	Reviewing Agency	Public Notification (15.3)	Approving Agency	Appeal Process	Permit Period	Permit Extension
Certificate of LDS Compliance	15.6.1	Administrative	Admin.	None	Admin.	BOA	6 months 12 months	6 months Re-submit
Temporary Use Permit	15.6.2	Administrative	Admin.	None	Admin.	BOA	See 4.7 4.6	n/a
Certificate of Occupancy	15.6.3	Administrative	Admin.	None	Admin.	BOA	n/a	n/a
Modification of Dimensional Standards	15.6.4	Administrative	Admin.	None	Admin.	ВОА	n/a	n/a
Grading Permit	15.7.1	Administrative	Admin.	None	Admin.	BOA	6 months 12 months	Re-submit
Floodplain Development Permit	15.7.2	Administrative	Admin.	None	Admin.	BOA	1 year 12 months	Re-submit
Stormwater Permit	15.7.3	Administrative	Admin.	None	Admin.	BOA	1 year 12 months	Re-submit
Site Plan/Design Review (Minor)	15.8.1	Administrative	Admin.	None	Admin.	BOA	1 year 2 years	1 year Up to 3 years max.*
Site Plan/Design Review (Major)	15.8.2	Quasi judicial Administrative	Admin.	1,2,4	Planning Board	Superior Court	1 year 2 years	1 year Up to 3 years max.*
Subdivision (Minor)	15.9.1	Administrative	Admin.	None	Admin.	BOA Sup erior Court**	30 days to file plat	Re-submit
Subdivision (Major)	15.9.2	Quasi judicial	Admin.	1,2,4	Planning Board	BOA	1 year to Final Plat	6-months
Subdivision (Major)	See 15.9.2,	15.9.3, and 15.9.4	L	L			L	
Subdivision (Major)- Preliminary Plat	15.9.3	Administrative	Admin.	None-1,2,4	Planning Board Admin.	BOA Sup erior Court**	1 year to final plat 2 years to final plat	6 months Up to 3 years max.*
Subdivision (Major)- Final Plat	15.9.4	Administrative	Admin.	None	Admin.	BOA Sup erior Court**	30 days to file plat	Re-submit
Special Use Permit	15.10	Quasi-Judicial	Planning Board	1,2,5	Planning Board	Superior Court	1 year 2 years	1 year Up to 3 years max.*
Designation of Historic Landmarks/Districts	15.11.1	Legislative	HPC	1,2,3	Board of Aldermen	Superior Court	n/a	n/a
Certificate of Appropriateness (Minor)	15.11.2	Administrative	Admin.	None	Admin.	НРС	6 months 12 months	Re-submit
Certificate of Appropriateness (Major)	15.11.3	Quasi-Judicial	Admin.	1,2,4	HPC	BOA	6 months 12 months	Re-submit
Appeal of Administrative Decision	15.12	Quasi-Judicial	BOA	1,4	BOA	Superior Court	30 days to Appeal	n/a

Variance	15.13	Quasi-Judicial	BOA	1,4	BOA	Superior Court	30 days to Appeal	n/a
Text Amendment	15.14	Legislative	Planning Board	1,2,3,4	Board of Aldermen	Superior Court	n/a	n/a
Map Amendment (Rezoning)	15.14	Legislative	Planning Board	1,2,3,4	Board of Aldermen	Superior Court	n/a	n/a
Conditional District	15.15	Legislative	Planning Board	1,2,5	Board of Aldermen	Superior Court	May be rescinded after 2 years 2 years	n/a Up to 3 years max.*
Vested Right	15.16	Legislative	Planning Board	1,2,4	Board of Aldermen	None	2 5 years	Up to 5 years total

^{*} See Section 15.16.3

11. <u>Amend Section 15.5 General Requirements for Quasi-Judicial Hearings and Decisions as follows:</u>

15.5- General Requirements for Quasi-Judicial Evidentiary Hearings and Quasi-Judicial Decisions.

A quasi-judicial decision is a process that involves decision involving the finding of facts regarding a specific application of an ordinance and that requires the exercise of discretion when applying the standards of the ordinance. Quasi-judicial decisions include, but are not limited to, decisions involving variances, special use permits, certificates of appropriateness, and appeals of administrative determinations. In accordance with G.S. 160A 393 160D-1-2, -1402, decisions on the approval of site plans and subdivisions and are quasi-judicial in nature if the ordinance authorizes (...).

12. Amend Section 15.5.1 Standards of Conduct as follows:

Standards for Conduct of Quasi-judicial Evidentiary Hearings.

An evidentiary hearing is a hearing to gather competent, material, and substantial evidence in order to make findings for a quasi-judicial decision required by an ordinance.

C. (...) All decisions shall be based on competent, material, and substantial evidence entered in as part of the record.

13. <u>Amend Section 15.6.1 Certificates of Land Development Standards (LDS) Compliance as follows:</u>

- G. **Permit Validity:** Upon the approval of the Certificate of Land Development Standards Compliance, the applicant shall have six (6) months one (1) year to obtain a building permit or otherwise begin the permitted use.
- H. **Permit Extension:** The Administrator may grant a single extension of this time period of up to six (6) months upon submittal by the applicant of sufficient justification for the extension. Renewal of an expired certificate shall require the same application procedure as the initial permit. No further development activity shall be performed until the new certificate is issued.

^{** 160}D-1403(b)

- 14. Amend Section 15.7.1 Grading Permit (Sedimentation and Erosion Control) as follows:
 - H. **Permit Validity:** When work under a grading permit is not completed substantially commenced within six (6) months one (1) year following the date of issuance of the grading permit, the grading permit shall be deemed expired.
- 15. Amend Section 15.7.3 Stormwater Permits as follows:
 - G. **Permit Validity:** When a stormwater permit is issued in association with a project requiring a building permit, the stormwater permit shall expire upon the expiration or revocation of the building permit. When a stormwater permit is issued for a project that does not require a building permit, the stormwater permit shall expire if work is not initiated within twelve (12) months of the date of issuance of the permit. Or if work stops for a twelve (12) month period.
- 16. Amend Section 15.8.1 Site Plan/Design Review (Minor) as follows:
 - H. **Permit Validity:** Upon the approval of the Minor Site Plan, the applicant shall have one (1) year two (2) years to obtain a building permit.
 - I. Permit Extension: The Administrator may grant a single extension of this time period of up to one (1) year upon submittal by the applicant of sufficient justification for the extension. Pursuant to 160D-108.1(e)(2), the Administrator may provide an extension for a period exceeding two (2) years but not exceeding five (5) years where warranted in light of all relevant circumstances, including, but not limited to: the size and phasing of development, the level of investment, the need for the development, economic cycles, and market conditions or other considerations. These determinations are in the sound discretion of the Administrator and shall be made following the same application procedure as the initial approval. No further development activity shall be performed until the extension approval is issued.
- 17. Amend Section 15.8.2 Site Plan/Design Review (Major) as follows:
 - B. Process Types: Quasi-judicial (see also 15.4) Administrative
 - 36. **Decisions/Findings of Fact:** Following the public hearing the commission Planning Board may approve, deny or approve with conditions the application for a Major Site Plan. No Major Site Plan shall be granted approved unless the commission Planning Board finds each of it complies with the following findings of facts to be true:
 - 1. The plan is consistent with the adopted plans and policies of the Town;
 - 2. The plan complies with all applicable requirements of this ordinance; and
 - 3. There exists adequate infrastructure (transportation and utilities) to support the plan as proposed;

The plan has infrastructure as required by the ordinance to support the plan as proposed;

4. The proposed plan conforms to the character of the neighborhood, considering the location, type and height of buildings or structures and the type and extent of landscaping on the site; and

- 5. The application will not substantially injure the value of adjoining or abutting property, and will not be detrimental to the use or development of adjacent properties or other neighborhood uses.
- J. **Review Period by Commission-Planning Board:** Applications for Major Site Plans shall be acted upon within ninety (90) days after filing, otherwise the application shall be deemed approved and a permit shall be issued. An extension of time may be granted by mutual consent of the commission Planning Board and the applicant.
- L. **Permit Validity**: Upon the approval of the Major Site Plan, the applicant shall have one year two (2) years to obtain a building permit.
- M. Permit Extension: Upon the approval of the Major Site Plan, the applicant shall have one (1) year to obtain a building permit. Failure to secure building permits for the permitted work within this time shall render the compliance void. Any change to the approved plans that has not been authorized by the Administrator shall invalidate the certificate of land development standards compliance and any subsequent building permits. Pursuant to 160D-108.1(e)(2), the Administrator may provide an extension for a period exceeding two (2) years but not exceeding five (5) years where warranted in light of all relevant circumstances, including, but not limited to, the size and phasing of development, the level of investment, the need for the development, economic cycles, and market conditions or other considerations. These determinations are in the sound discretion of the Administrator and shall be made following the same application procedure as the initial approval. No further development activity shall be performed until the new approval is issued.

18. Amend Section 15.9.1 Minor Subdivisions as follows:

F. Appeals. Notwithstanding the provisions of section 15.12.2 below, when an applicant disagrees with Appeals of the decisions of the Administrator, the applicant may, within thirty (30) days after the receipt of the decision in writing, request that the application be forwarded to the Planning Board for determination at the next regularly scheduled meeting of the Board. The request must be made in writing and delivered to the Town Clerk. shall be heard by the Board of Adjustment in accordance with section 15.12 Appeals of the decision of the Planning Board shall be made to the Superior Court of Haywood County. Such an appeal must be made in writing within thirty (30) days of the receipt of the decision by the property owner.

. . .

- I. The minor subdivision process is not intended to permit the avoidance of improvements, infrastructure or other standards imposed for major subdivisions. Therefore, when an application for minor subdivision approval is made by an applicant who has previously obtained minor subdivision approval for an adjacent parcel of land in the previous two years, the application shall be treated as an application for, and conform to the requirements of, a major subdivision set forth below.
- 19. Amend Section 15.9.2 Major Subdivisions as follows:

The minor major subdivision review process is required for those divisions of land into eight (8) or more lots or which require dedication of public utilities and/or public streets.

- A. Process Types: Quasi-judicial (See also 15.4). Administrative
- B. **Pre-Application Procedure:** It is required that every applicant for a Major Subdivision meet with the Administrator in a conference prior to the submittal of an application. The purpose of this conference is to provide clarification and assistance in the preparation and submission of plats for approval. It is recommended that the applicant provide a sketch plan (15.4.2) and Environmental survey (15.4.1) to the Administrator prior to or at the pre-application conference. The provision of a sketch plan will allow the Administrator an opportunity to review the proposal before the applicant expends funds on the preparation of a detailed Subdivision Plan.
- C. Required Application Information: Environmental Survey (15.4.1) and Preliminary Plat.
- D. Determination of Completeness: The Administrator shall review the application to ensure that it is complete, prepare a report and recommendation on the application, and schedule the matter for a public hearing before the Community Appearance Commission.
- E. Public Notification: Level 1, 2 and 4.
- F. Neighborhood Meeting (15.3.7): Optional.
- G. Public Hearing: The Planning Board shall hold a hearing on the proposal. The applicant and other property owners likely to be materially affected by the application shall be given an opportunity to be heard.
- H. Decisions/Findings of Fact: Following the public hearing the commission may approve, deny or approve with conditions the application for a Major Subdivision. No Major Subdivision shall be granted unless it complies with the following findings of fact:
- 1. The plan is consistent with the adopted plans and policies of the Town;
- 2. The plan complies with all applicable requirements of this ordinance;
- 3. There exists adequate infrastructure (transportation and utilities) to support the plan as proposed; and
- 4. The application will not substantially injure the value of adjoining or abutting property, and will not be detrimental to the use or development of adjacent properties or other neighborhood uses.
- I. Review Period by Planning Board: The Planning Board shall take action (approve or deny approval) within thirty two (32) days of the public hearing on the matter. Should the Planning Board fail to act on the preliminary plat within the prescribed period, the applicant may seek preliminary plat approval by the Board of Aldermen at the next regularly scheduled meeting of the aldermen.
- J. Decisions: If the Planning Board approves the Major Subdivision, the applicant will be directed to proceed to the preparation of a Preliminary Plat (15.4.4). If the Planning Board disapproves or approves conditionally the plat, the reasons for such action shall be stated in writing and entered in the records of the Planning Board. The applicant may make changes and submit a revised plat which revision shall be submitted, review and acted on in accordance with the procedures set forth in this section.

- K. Appeals: An appeal from the decision of the Planning Board regarding a Major Subdivision request may be made by an aggrieved party and shall be made to the Superior Court of Haywood County in the nature of certiorari. Any such petition to the Superior County shall be filed with the court no later than thirty (30) days after the applicant receives the written copy of the decision of the Planning Board.
- L. **Permit Validity:** Approval of a Major Subdivision Plan shall be valid for one (1) year from the date of approval. A Preliminary Plat shall be presented for approval prior to the end of this one (1) year period.
- M. Permit Extension: The Administrator may grant a single extension of this time period of up to six (6) months upon submittal by the applicant of sufficient justification for the extension.
- C. **Preliminary Plat Approval:** The Planning Board shall review and either approve or deny the major subdivision applicant's preliminary plat in accordance with the procedure set forth in section 15.9.3 below. Engineering, including a compliant Stormwater Plan (12.5) and Construction Documents (15.4.4) shall be submitted after Planning Board review.
- D. **Final Plat:** Once all infrastructure improvements are installed or financially guaranteed as required by Section 6.13 below, the Final Plat shall be presented for approval in accordance with Section 15.9.4 below.
- 20. Amend Section 15.9.3 Preliminary Plat as follows:
- 15.9.3. Preliminary Plats for Major Subdivision:
 - A. **Process Types:** Administrative.
 - B. **Permit Required Before Any Land-Disturbing Activity:** No such land-disturbing activity shall take place until a Preliminary Plat has been approved.
 - C. **Pre-Application Procedure:** Prior to applying for a Preliminary Plat or and submitting plans, the applicant is encouraged to meet with the Administrator. The purpose of this meeting is to discuss any specific engineering detail necessary for consideration prior to the preparation of the Preliminary Plat.
 - D.C. **Required Application Information:** Environmental Survey (15.4.1) and Preliminary Plat (15.4.4) prepared by a registered land surveyor, licensed landscape architect or licensed engineer.
 - D. **Determination of Completeness:** The Administrator shall review the application to ensure that it is complete, prepare a report and recommendation on the application, and schedule the matter for a public hearing before the Planning Board.
 - E. Determination of Conformity: Following submittal of the application and accompanying data, the information shall be reviewed by the Administrator for compliance with the requirements of this ordinance and with the Manual of Specifications. Provided the application is complete, applications shall be reviewed and acted upon by the staff and notice given the applicant within thirty (30) days of receipt of the application.
 - E. **Public Notification:** Level 1, 2 and 4.

- F. **Neighborhood Meeting (15.3.7):** Optional.
- G. **Public Hearing:** The Planning Board shall hold a hearing on the proposal. The applicant and other property owners likely to be materially affected by the application shall be given an opportunity to be heard.
- H. **Decisions/Findings of Fact:** Following the public hearing the board may approve, deny or approve with conditions the application for a Major Subdivision. No Major Subdivision shall be approved unless the commission finds each of the following facts to be true:
 - 1. The plan is consistent with the adopted plans and policies of the Town;
 - 2. The plan complies with all applicable requirements of this ordinance; and
 - 3. The plan has infrastructure as required by the ordinance to support the plan as proposed.
- F.I. Substantial Changes: Substantial Changes from the approved major subdivision plan preliminary plat shall require additional review by the Planning Board. Substantial changes shall include, but not be limited to redesign of streets, increasing the number of lots, altering the design of more than twenty (20) percent of the lots, and/or reducing the number of lots by twenty (20) percent. All other changes shall be considered minor modifications subject to review by the Administrator.
- H.J. Appeals. Appeals of the decisions of the Administrator shall be heard by the Board of Adjustment in accordance with section 15.12. An appeal of the decision to approve or deny a Preliminary Plat or a substantial change to an approved Preliminary Plat may be made by an aggrieved party to the Superior Court of Haywood County no later than thirty (30) days after the applicant receives the written copy of the decision.
- K. **Permit Validity:** Unless substantial work has commenced or a building permit has been obtained, approval of a preliminary plat expires two (2) years from the date such approval was granted.
- L. **Permit Extension:** The applicant may apply for an extension of the approval period. The Planning Board may approve an extension of the time required to file the final plat up to a total of five (5) years from the date the initial application was approved where warranted in light of all relevant circumstances, including, but not limited to, the size and phasing of development, the level of investment, the need for the development, economic cycles, and market conditions or other considerations. No further development activity shall be performed until the new approval is issued.
- 21. Amend Section 15.9.4 Final Plats as follows:
- 15.9.4. Final Plat for Major Subdivision:
 - G. **Appeals:** Appeals of the decisions of the Administrator shall be heard by the Board of Adjustment in accordance with Section 15.12. An appeal of the decision to approve or deny a Final Plat or to approve or deny a substantial change to an approved Preliminary Plat may be made by an aggrieved party to the Superior Court of Haywood County no later than thirty (30) days after the applicant receives the written copy of the decision.

- J. **Permit Validity:** Final plats for major subdivisions that have been granted approval must be recorded within thirty (30) days following approval or the approval becomes invalid. No lots shall be sold prior to approval by the town and recording of the Final Plat for the subdivision.
- K. **Permit Extension:** The Administrator may grant a single extension of this time period of up to six (6) months upon submittal by the applicant of sufficient justification for the extension. Resubmit.

22. Amend Section 15.10.3 Effect of Decisions as follows:

- B. **Permit Validity:** 6 months two (2) years to obtain building permit. Such permit shall remain valid as long as a valid building permit exists for the project.
- C. **Permit Extension:** 6 months—one time only. The applicant may apply for an extension of the approval period. The Planning Board may approve an extension of the time required to file the final plat up to a total of five (5) years from the date the initial application was approved where warranted in light of all relevant circumstances, including, but not limited to, the size and phasing of development, the level of investment, the need for the development, economic cycles, and market conditions or other considerations. No further development activity shall be performed until the new approval is issued.
- 23. <u>Amend Section 15.11.2 Certification of Appropriateness Minor Works for Local Landmarks and Local Historic Districts as follows:</u>
 - A. **Applicability:** Minor works are those exterior changes that do not involve substantial alterations, additions or removals that could impair the integrity of the local landmark property and/or locally designated historic district as a whole.
 - E. Once an application containing all needed elements is submitted, the Administrator shall review the application and approve or deny it based on compliance with the standards contained in this chapter and in any applicable Design Review Guidelines or other standards that may apply.
 - I. **Permit Validity:** 6 months. one (1) year.
 - J. Permit Extension: None must Re-submit.

24. Amend Section 15.11.3 Certification of Appropriateness – Major Works for Local Landmarks and Local Historic Districts as follows:

B. (...) This advice shall be on the commission's Design Review Guidelines or other standards that may apply, the nature of the area where the proposed project will take place, and other relevant factors.

- F. (...) No Certificate of Appropriateness shall be granted unless the commission finds that the application complies with the principles of the Design Review Guidelines adopted by the commission for review of changes and new construction.
- I. Delay in Demolition of Local Landmarks and Buildings within Local Historic Districts: An application for a certificate of appropriateness authorizing the demolition, removal or destruction of a designated local landmark or a building, structure or site within a local historic district may not be denied except as provided below:

K. L. Permit Validity: 6 months. one (1) year.

L. M. Permit Extension: None - must Re-submit.

25. Amend Section 15.12.1 Applicability as follows:

This process is hereby established to provide an appeal process for parties aggrieved by any order, requirement, decision or determination, other than the decision to approve or deny a minor subdivision plat, made by an administrative officer charged with enforcing the provisions of this ordinance. For appeals of decisions regarding minor subdivision plats, see 15.9.1(F).

26. Amend Section 15.13.3 Formal Review as follows:

A. Action by the Board of Adjustment:

1. Upon receipt of the request for a variance from the Administrator, the board of adjustment shall hold a quasi-judicial an evidentiary hearing on the request.

27. Amend Section 15.14.2 Review by Planning Board as follows:

B. Additional Public Notification for Large Scale Amendments: (...) When this occurs, the town may use the expanded published notice provisions found in the North Carolina General Statutes at Section 160A-384 160D-601.

28. Replace Section 15.14.3 Protest Petitions as follows:

15.14.3 Protest Petitions.

- A. Qualification of Protest: In accordance with G.S. 160A-385(a)(2) a valid protest petition must be signed by the owners of either twenty percent (20%) or more of the area included in the proposed change, or five percent (5%) of a 100 foot wide buffer extending along the entire boundary of each discrete or separate area proposed to be rezoned. A street right of way is not to be considered in computing the 100 foot buffer area as long as that street right of way is 100 feet wide or less.
- B. Effect of Protest Petition of Board of Aldermen Vote: With a valid protest petition, the amendment shall not become effective except by favorable vote of three fourths (¾) of all the members of the Board of Aldermen.

- C. Duly Signed Petition Required: No protest against any proposed amendment shall be valid or effective unless it is on a form provided by the Town actually bearing the signatures of the required number of property owners and stating that the signers do protest the proposed change or amendment. All such petitions shall be filed in the office of the Town Clerk for validation at or before 12:00 noon not less than 3 working days prior to the date of the hearing.
- D. Withdrawal of Protest Petition: Any qualified property owner who signed the protest petition may withdraw their protest against a proposed zoning amendment any time prior to the meeting at which the rezoning will be considered.

15.14.3. Public Comment

Zoning regulations may from time to time be amended, supplemented, changed, modified, or repealed. If any resident or property owner in the local government submits a written statement regarding a proposed amendment, modification, or repeal to a zoning regulation, including a text or map amendment that has been properly initiated as provided in G.S. 160D-601, to the clerk to the board at least two business days prior to the proposed vote on such change, the clerk to the board shall deliver such written statement to the governing board. If the proposed change is the subject of a quasi-judicial proceeding under G.S. 160D-705 or any other statute, the clerk shall provide only the names and addresses of the individuals providing written comment, and the provision of such names and addresses to all members of the board shall not disqualify any member of the board from voting (160D-603).

29. Amend Section 15.14.4 Consideration by the Board of Aldermen as follows:

B. **Additional Public Notification for Large Scale Amendments:** (...) When this occurs, the town may use the expanded published notice provisions found in the North Carolina General Statutes at Section 160A 384 160D-601.

30. Amend Section 15.14.5 Plan Consistency as follows:

In accordance with G.S. 160A 383 160D-604(d); -605(a); -701, all such amendments shall be made in accordance with the Comprehensive Land Development Use Plan and any other officially adopted development plan.

31. Amend Section 15.15 Conditional Districts as follows:

Conditional Districts (Section 2.6) are districts with conditions voluntarily added by the applicant and approved in a legislative procedure by the Board of Aldermen in accordance with G.S. 160A 382 160D.

32. Amend Section 15.15.2 Formal Review as follows:

D. The applicant will have a reasonable opportunity to consider and respond to any conditions and site-specific standards proposed by either the Planning Board or the Board of Aldermen prior to final action. In accordance with G.S. 160A 382(b) 160D.

33. Replace Section 15.16 Vested Right as follows:

15.16- Vested Right.

15.16.1 Purpose and Applicability.

The zoning vested right is a right which is established pursuant to NCGS 160A[OG1] 385.1 to undertake and complete the development and use of property under the terms and conditions of an approved site specific development plan. Obtaining a zoning permit or preliminary plat subdivision approval through the vested rights procedure gives the applicant the right to start construction of the development as approved an additional two (2) to five (5) years to begin and/or complete work as appropriate.

15.16.2 Vested Right Procedures.

- A. Process Type: Legislative.
- B. **Pre-Application Procedure:** The applicant shall meet with the planning department prior to submitting an application to inquire about specific zoning requirements and obtain the proper application forms. The applicant shall be advised of all necessary information and requirements of the vested rights procedure[0G1].
- C. Required Application Information: Master Plan (15.4.3).
- D. Determination of Completeness: The Administrator shall review the application and accompanying site plan for compliance with the requirements of this chapter and other applicable regulations and schedule the matter for a public hearing before the Board of Aldermen.
- E. Public Notification: Level 1, 2 and 4.
- F. Formal Review: Following a public hearing, the Board of Aldermen shall take one of the following actions:
- 1. Approve the vested rights request. The Administrator is then directed to issue a vested rights zoning permit.
- 2. Approve the vested rights request subject to conditions which are necessary to protect the public health, safety and welfare. The Administrator is then directed to issue the vested rights zoning permit subject to the changes in the site plan to be made by the developer.
- 3. Table the vested rights request pending the submittal of additional information.
- 4. Deny the vested rights request.
- G. Appeals: None.

15.16.3 Vested Right Duration Effect of Approval.

- A. Maximum Term: A zoning right that has been vested as provided in this section shall remain vested for a period of two (2) to five (5) years as approved by the Board of Aldermen.
- B. Building Permit/Preliminary Plan Required: Upon issuance of a building permit/preliminary plan approval, the expiration provisions for those permits shall apply, except that neither shall not expire or be revoked because of the running of time while a zoning vested right under this section is outstanding. A zoning vested right shall terminate at the end of the applicable vesting period with respect to buildings and uses for which no valid building permit applications have been filed. [0G2]
- C. Town May Terminate Vested Rights Early: The town may terminate the zoning vested rights upon payment to the affected landowner of compensation for all costs, expenses and other losses incurred by the landowner, including, but not limited to, all fees paid in consideration of all financing and all architectural, legal and other fees incurred after approval by the town.
- D. State or Federal Regulation Not Bound by Vested Right: The zoning vested right may be terminated upon the enactment or promulgation of a state or federal law or regulation that precludes development as contemplated in the site specific development plan. In such a case the Board of Aldermen may, by ordinance, after notice and a hearing, modify the affected provisions upon a finding that the change in state or federal law has a fundamental effect on the plan.
- E. Shall Run with the Property: A zoning vested right is not a personal right but shall attach to and run with the applicable property. After approval of a site specific development plan, all successors to the original landowner shall be entitled to exercise such right while applicable.
- F. Vested Right Not Exclusive: Nothing in this section shall prohibit the revocation of the original approval or other remedies for failure to comply with applicable terms and conditions of the approval or this chapter.

15.16 Permit Choice and Vested Rights.

15.16.1 Permit Choice.

- A. If an applicant submits a complete application for a development permit or approval and a development regulation changes between the time the application was submitted and a decision is made, the applicant may choose whether the application will be judged under the previously existing or modified rule (160D-108(b)).
- B. When a development requires the issuance of multiple permits, the applicant may, for a period of up to 18 months, choose for each permit whether to proceed under the rule that existed at the time of application for the initial permit or under a modified rule.
- C. For the purposes of this subsection, an erosion and sedimentation control permit or a sign permit do not count as an initial application for a development permit.

15.16.2 Vested Rights: Generally.

- A. Pursuant to NC G.S. 160D-108, a zoning vested right is the right to undertake and complete the development and use of property as it was approved despite a subsequent change in applicable regulation. If the development regulation changes after the application has been approved, the project may continue under the old rule as initially approved.
- B. A statutory vested right is established when:
 - 1. A site-specific vesting plan is approved; or

- 2. A final plat is approved for the initial phase of a multi-phase development; or
- 3. A development agreement is approved pursuant to NC G.S. Chapter 160D, Article 10; or
- 4. When a development permit has been issued for all other types of development.

15.16.3 Vested Right Terms.

A. Duration:

Type of Permit/Right	Term
Building Permit	6 months
Development Approval	12 months
Site-Specific Vesting Plan	2-5 years
Multi-Phase Development	7 years from first site plan approval
Development agreement	Per agreement negotiated pursuant to NCGS 160D, Article 10
Development discontinuation	2 years

A vested right for a site-specific vesting plan remains vested for a period of 2 years from the date of the first development approval or permit issued for the site. Pursuant to 160D-108.1(e)(2), the Administrator may provide an extension for a period exceeding two (2) years but not exceeding five (5) years where warranted in light of all relevant circumstances, including, but not limited to, the size and phasing of development, the level of investment, the need for the development, economic cycles, and market conditions or other considerations. These determinations are in the sound discretion of the Administrator and shall be made following the same application procedure as the initial approval.

- **B.** A development permit or approval expires and the vested rights terminate at the time specified in subsection A, unless the work authorized by the permit has substantially commenced. For the purpose of this section, the **substantial commencement** of work shall be determined by the Administrator based on any of the following:
 - 1. The development has received and maintained a valid erosion and sedimentation control permit and conducted grading activity on a continuous basis that has not been discontinued for longer than 30 days; or
 - 2. The development has created substantial on-site infrastructure; or
 - 3. The development has received and maintained a valid building permit.
- **C.** Pursuant to NC G.S. 160D-108, even if work has substantially commenced, a development approval still expires if development work is intentionally and voluntarily discontinued for a period of not less than 24 consecutive months.

15.16.4 Definitions:

For the purpose of this section, the following definitions apply:

- A. **Development-** as defined in Section 17.4 of this ordinance
- B. **Development permit** an administrative or quasi-judicial approval that is written and that is required prior to commencing development or undertaking a specific activity, project, or development proposal, including any of the following:
 - 1. Zoning permits.
 - 2. Site plan approvals.
 - 3. Special use permits.
 - 4. Variances.
 - 5. Certificates of appropriateness.
 - 6. Plat approvals.
 - 7. Development agreements.
 - 8. Building permits.
 - 9. Subdivision of land.
 - 10. State agency permits for development.
 - 11. Driveway permits.
 - 12. Erosion and sedimentation control permits (NC G.S. 143-755(e)(1)).
- C. **Multi-phase development** a development containing 25 acres or more that is both of the following:
 - 1. Submitted for development permit approval to occur in more than one phase
 - 2. Subject to a master development plan with committed elements showing the type and intensity of use of each phase (NC G.S. 160D-108(j)).
- D. **Site-specific vesting plans** for the purposes of this chapter, the following types of development approvals are site-specific vested plans:
 - 1. Any development for which a special use permit is required;
 - 2. Major subdivisions;
 - 3. Major and minor site plans;
 - 4. Conditional zoning.

15.16.6. Relevant provisions:

- A. **Run with the Property:** A zoning vested right is not a personal right but shall attach to and run with the applicable property. All successors to the original landowner may exercise such right under the same conditions and for the same time that the original applicant could have exercised such right.
- B. **Town May Terminate Vested Rights Early:** The town may terminate the zoning vested rights upon payment to the affected landowner of compensation for all costs, expenses and other losses incurred by the landowner, including, but not limited to, all fees paid in consideration of all financing and all architectural, legal and other fees incurred after approval by the town.
- C. Not Exclusive: Nothing in this section shall prohibit the revocation of the original approval or other remedies for failure to comply with applicable terms and conditions of the approval or this chapter.
- D. **Hazard:** The town may terminate the zoning vested right if it determines after a public hearing that natural or man-made hazards are on or in the immediate vicinity of the property, and if not corrected, these hazards would pose a serious threat to the public health, safety, and welfare.

E. **State or Federal Regulation Not Bound by Vested Right:** The zoning vested right may be terminated upon the enactment or promulgation of a state or federal law or regulation that precludes development as contemplated in the site-specific vesting plan. In such a case the Board of Aldermen may, by ordinance, after notice and a hearing, modify the affected provisions upon a finding that the change in state or federal law has a fundamental effect on the plan.

34. Amend Section 16.1.2 Notice of Violation as follows:

- A. Whenever the Administrator has reasonable cause to believe that a person is violating any of the provisions of this ordinance or any plan, order, or condition issued pursuant to this chapter, that official shall immediately notify that person of the violation each of the following, as applicable:
 - 1. the holder of any development approval for the property;
 - 2. the landowner; and
 - 3. the person undertaking the work or activity that is the cause of the violation.
- B. Such notice of violation shall be in writing and shall be served by personal delivery or certified or registered mail, return receipt requested.

The notice of violation shall be delivered by personal delivery, electronic delivery, or first-class mail. The notice of violation may also be posted on the property.

35. Delete Section 16.2.3 Criminal Penalties and renumber subsequent Sections:

Pursuant to GS § 14-4, any person, firm, or corporation convicted of violating the provisions of this Ordinance shall, upon conviction, be guilty of a misdemeanor and shall be fined an amount consistent with the General Statutes.

36. Add the following to Section 17.3 Definitions, Use Type:

Dwelling- any building, structure, manufactured home, or mobile home, or part thereof, used and occupied for human habitation or intended to be so used, and includes any outhouses and appurtenances belonging thereto or usually enjoyed therewith.

Dwelling- Accessory. A smaller, secondary dwelling unit either detached or attached, such as a garage apartment or cottage, designed for occupancy by one or two persons not exceeding 750 square feet of gross floor space and located on a lot with an existing single-family dwelling. Said units shall not exceed one per lot.

37. Amend and add to Section 17.4 Definitions, General as follows:

Building. Any structure built for support, shelter or enclosure for any occupancy or storage. A structure with a roof and walls built for permanent use. When used in reference to a residential structure, any one- or two-family dwelling or portion thereof, including townhouses, that is used, or designed or intended to be used for habitation for living, sleeping, cooking, or eating purposes or any combination thereof, including accessory structures (NC Building Code: Residential Code Sec 202)

Administrative decision. A decision made in the implementation, administration, or enforcement of development regulations that involve the determination of facts and the application of objective standards set forth in Chapter 160D of the NC G.S. and the Town of Waynesville Code of Ordinances.

Quasi-judicial decision. A decision involving the finding of facts regarding a specific application of an ordinance and that requires the exercise of discretion when applying the standards of the ordinance. The term includes, but is not limited to decisions involving variances, special use permits, or certificates of appropriateness. (160D-102(28)).

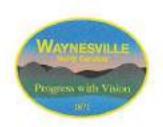
Legislative decision. The adoption, amendment, or repeal of a regulation under NC G.S. Chapter 160D or Town of Waynesville Code of Ordinances. The term also includes the decision to approve, amend, or rescind a development agreement consistent with the provisions of Article 10 of the NC G.S. 160D.

Development. Any man-made change to improved or unimproved real estate, including, but not limited to: buildings or other structures, mining, dredging, filling, grading, paving, excavation or drilling operations, or storage of equipment or materials.

- a. The construction, erection, alteration, enlargement, renovation, substantial repair, movement to another site, or demolition of any structure.
- b. The clearing, excavation, dredging, grading, filling, paving, drilling operations, mining, or alteration of land.
- c. Storage of equipment or materials.
- d. The subdivision of land as defined in this ordinance.
- e. The initiation of substantial change in the use of land or the intensity of use of land.

For stormwater calculation, development shall be considered any land disturbing activity that increases the amount of built upon area or otherwise decreases the infiltration of precipitation into the soil.

38. Amend Section 17.5 Definitions, Flood Damage Prevention as follows:


Development. Any man-made change to improved or unimproved real estate, including, but not limited to: buildings or other structures, mining, dredging, filling, grading, paving, excavation or drilling operations, or storage of equipment or materials.

- a. The construction, erection, alteration, enlargement, renovation, substantial repair, movement to another site, or demolition of any structure.
- b. The clearing, excavation, dredging, grading, filling, paving, drilling operations, mining, or alteration of land.
- c. Storage of equipment or materials.
- d. The subdivision of land as defined in this ordinance.
- e. The initiation of substantial change in the use of land or the intensity of use of land.

For stormwater calculation, development shall be considered any land disturbing activity that increases the amount of built upon area or otherwise decreases the infiltration of precipitation into the soil.

ADOPTED thisDay of June, 2021.	
	TOWN OF WAYNESVILLE
	J. Gary Caldwell, Mayor
ATTEST:	
Eddie Ward, Town Clerk	
APPROVED AS TO FORM:	

Ronald Sneed, Town Attorney

To:

Town of Waynesville Board of Aldermen

From:

Susan Teas Smith, Planning Board Chair

Date:

May 28, 2021

Subject:

Planning Board Report on Text Amendments pertaining to NCGS 160D

Description: Recommendations for changes to the LDS in response to statutory guidelines

At a Special Called Meeting of the Planning Board on Wednesday, May 26, 2021, the Planning Board held a public hearing to consider staff-initiated text amendments to multiple sections of the Land Development Standards. The ordinance changes were prepared by staff and Attorney Ron Sneed's Office to bring the Town's Land Use Regulations into compliance with the updated NC General Statutes related to local government authority, known as 160A and re-organized as 160D. The Planning Board recommends the following:

- The Zoning application should be approved and is consistent with the Town's 2035 Comprehensive Plan, and is reasonable and in the public interest because:
 - Proposed amendments will keep the Town of Waynesville in compliance with the current General Statutes for land use planning and zoning, and clarify definitions and procedures which should aid in land use decisions; and
 - The proposed amendments are consistent with the first goal of the 2035 Comprehensive Plan to continue to promote smart growth principles in land use planning and zoning.
 - Create walkable and attractive neighborhoods and commercial centers.
 - Encourage in-fill, mixed use, and context-sensitive development.
 - Promote conservation design to preserve important natural resources.
 - Reinforce the unique character of Waynesville.

The motion was approved unanimously by a vote of 7-0.

Susan Teas Smith, Planning Board Chair,

Data

Elizabeth Teague, Development Services Director,

Date

CONSISTENCY STATEMENT WORKSHEET

Date:	June 22, 2021
Descri	iption: Text Amendments to Land Development Standards pertaining to 160D
	ordance with NCGS 160D-604(d); -605(a); -701, the Town of Waynesville Board of Aldermen find regards to a Text Amendment to the Land Development Standards
The B	oard hereby adopts the following statement(s):
	he text amendment is approved and is consistent with the Town's comprehensive land use plane ecause:
	The text amendment and is reasonable and in the public interest because:
	The text amendment is rejected because it is inconsistent with the Town's comprehensive land plan and is not reasonable and in the public interest because
	In addition to approving this text amendment, this approval is also deemed an amendment to the Town's comprehensive land use plan. The change in conditions taken into account in amending the zoning ordinance to meet the development needs of the community and why this action is reasonable and in the public interest, are as follows:
Board	Member, made a motion, seconded by
The m	notion passed (vote results here

Eddie Ward, Clerk, Date

J. Gary Caldwell, Mayor, Date

TOWN OF WAYNESVILLE BOARD OF ALDERMEN REQUEST FOR BOARD ACTION

Meeting Date: June 22, 2021

SUBJECT:

This is a Public Hearing for June 22, 2021 to consider additional changes to the Town of Waynesville Code of Ordinances for compliance with NCGS 160D.

AGENDA INFORMATION:

Agenda Location: New Business

Item Number: E5

Department: Development Services

Contact: Elizabeth Teague, Olga Grooman
Presenter: Olga Grooman, Attorney Anna Stearns

BRIEF SUMMARY:

In addition to the Land Development Standards, there are additional changes that need to be made to the Town Ordinances to bring it in compliance with NCGS Chapter 160D. This includes converting all references from "160A" to "160D" and updating required conflict of interest language within Article 4, inspections. Because these citations are in Ordinance Chapters other than the Land development Standards, staff is bringing them forward as a separate ordinance.

MOTIONS FOR CONSIDERATION:

1. Motion to adopt the attached text amendments to the Town Ordinance as presented (or as amended).

FUNDING SOURCE/IMPACT:

N/A

ATTACHMENTS:

1. Draft Ordinance

MANAGER'S COMMENTS AND RECOMMENDATIONS:

ORDINANCE NO. O-12-21

AN ORDINANCE AMENDING THE TEXT OF THE TOWN OF WAYNESVILLE LAND DEVELOPMENT STANDARDS

WHEREAS, the Town of Waynesville has the authority, pursuant to Part 3 of Article 19 of Chapter 160A, now Section III of Chapter 1 of 160D, of the North Carolina General Statutes, to adopt land development regulations, clarify such regulations, and may amend said regulations from time to time in the interest of the public health, safety and welfare; and

WHEREAS, the Town of Waynesville must comply with North Carolina General Statutes to maintain Land Development regulations comply with the most up to date version of State authorization statutes known as 160D by July 1, 2021.

WHEREAS, the Board of Aldermen find this Ordinance is consistent with the Town's 2035 Comprehensive Plan and that it is reasonable and in the public interest to "make decisions about resources and land use in accordance with North Carolina General Statutes." and

WHEREAS, after notice duly given, a public hearing was held on June 22, 2021 at the regularly scheduled meeting of the Board of Aldermen;

NOW, THEREFORE, BE IT ORDAINED BY THE BOARD OF ALDERMEN OF THE TOWN OF WAYNESVILLE, MEETING IN REGULAR SESSION ON _____AND WITH A MAJORITY OF THE BOARD MEMBERS VOTING IN THE AFFIRMATIVE, THE FOLLOWING:

That the Ordinance be amended as follows in compliance with statutory changes in N.C.G.S. 160D.

1. <u>Amend PART I.- CHARTER, Article VII.- TRANSITIONAL PROVISIONS</u>, Section 7.8 Building Permits as follows:

State Law Reference- Building Permits, G.S. § 160A-417 160D-403; -1108 et seq.

2. Amend Chapter 10 Buildings and Building Regulations as follows:

Footnotes:

State Law reference— Municipal authority to regulate the construction of buildings, G.S. 160A 411, 160A 412 160D-402; -404; -1102; -1104; state building code applicable throughout the state, G.S. 143-138(e).

3. Amend Article III PERMITS as follows:

Footnotes:

State Law reference— Building permits, G.S. 160A 417 143-138; 160D-403; -1108 et seq.

Section 10.76 Required; application.

(c) No permit issued under G.S. 143-136 143-143.2 or 143-151.26 143-151.36 shall be required for any construction, installation, repair, replacement or alteration costing \$5,000.00 \$15,000.00 or less (...)

State Law reference—Similar provisions, G.S. 160A-417 160D-403; -1108 et seq.

Section 10-80. Time limitations on validity.

State Law reference—Similar provisions, G.S. 160A 418 160D-403(c); -1109.

Section 10.81.- Changes in work after issuance.

State Law reference—Similar provisions, G.S. 160A 419-160D-403(d); -1110.

Section 10.82.- Revocation.

State Law reference—Similar provisions, G.S. 160A-422 160D-403(f); -1113.

8. Amend Article IV.- INSPECTION DEPARTMENT as follows:

Footnotes:

State Law Reference- Building inspection, G.S. 160A 411 160D- 402(b); -404(c); -1102.

Section 10-116.- Organization.

b). On and after the applicable date set forth in the schedule in G.S. 160A-411, no The Town of Waynesville town shall not employ an inspector to enforce the state building code as a member of the town inspection department who does not have (...).

Section 10-118. – Conflicts of interest.

No member of the inspection department shall be financially interested in the furnishing of labor, material or appliances for the construction, alteration or maintenance of any building within the town's jurisdiction or any part or system, or in the making of plans or specifications, unless he is the owner of the building. No member of the inspection department shall engage in any work which is inconsistent with his duties or with the interests of the town.

No staff member shall make a final decision on an administrative decision required by this Chapter if the outcome of that decision would have a direct, substantial, and readily identifiable financial impact on the staff member or if the applicant or other person subject to that decision is a person with whom the staff member has a close familial, business, or other associational relationship. If a staff member has a conflict of interest under this section, the decision shall be assigned to the supervisor of the staff person or such other staff person as may be designated by the development regulation or other ordinance.

No staff member shall be financially interested or employed by a business that is financially interested in a development subject to regulation under this Chapter unless the staff member is the owner of the land or building involved. No staff member or other individual or an employee of a company contracting with a local government to provide staff support shall engage in any work that is inconsistent with his or her duties or with the interest of the local government, as determined by the local government.

Section 10-123. Remedies.

State Law reference— Similar provisions, G.S. 160A-432 160D-1123.

4. Amend Article V- UNSAFE BUILDINGS as follows:

Footnotes:

State Law Reference- Unsafe buildings, G.S. 160A 425 160D-1116 et. seq.

Sec. 10-156- Inspection; notice to owner to correct.

(Code 1987, § 150.35)

State Law reference—Similar provisions, G.S 160A-425 160D-1116.

Sec. 10-157- Condemnation of especially dangerous buildings.

(Code 1987, § 150.36)

State Law reference—Similar provisions, G.S-160A-426 160D-1117.

Sec. 10-158- Failure of owner to take corrective action.

(Code 1987, § 150.37; Ord. No. 26-98, 8-25-1998; Ord. No. 5-05, 3-8-2005)

State Law reference— Similar provisions, G.S. 160A-428, 160A-429 160D-1121.

Sec. 10-159- Appeal by owner.

(Code 1987, § 150.38)

State Law reference— Similar provisions, G.S. 160A-430 160D-1123.

Sec. 10-160.- Enforcement procedures against owner.

(Code 1987, § 150.39)

State Law reference—Similar provisions, G.S. 160A 431 160D-1124.

Sec. 10-161.- Enforcement.

(Ord. No. 10-10, 7-27-2010)

State Law reference—Similar provisions, G.S. <u>160A-432</u> 160D-1125.

5. Amend Chapter 38.- HOUSING as follows:

State Law Reference- Minimum housing standards, G.S. 160A-441 160D-1201 et seq.

Sec. 38-1. – Findings and purpose.

- (a) Pursuant to G.S. 160A-441 160D-1201, it is found and declared that there exist in the town dwellings which are a dwelling shall not be unfit for human habitation due to dilapidation; (...).
- (b) In order to protect the health, safety and public welfare of the residents of the town as authorized by G.S. 160A-441 160D-1201 through 160A-450 160D-1212, it is the purpose of this chapter to establish minimum standards of fitness for the initial and continued occupancy of all buildings used for human habitation, as expressly authorized by G.S. 160A-444 160D-1201.

Sec. 38-2. – Jurisdiction.

State Law Reference- Territorial Jurisdiction, G.S. 160A 360 160D-200; -202; -903.

6. <u>Amend CHAPATER 38 – HOUSING, ARTICLE II. – ADMINISTRATION AND ENFORCEMENT as follows:</u>

Sec. 38-38.- Enforcement Procedure.

- (c) Failure to comply with order.
- (1). (...) the codes administrator shall submit to the board of aldermen at its next regular meeting a resolution directing the town attorney to petition the superior court for an order directing that owner comply with the order of the codes administrator, as authorized by G.S. 160A 446(g) 160D-1208(e).
- (2). (...) dwelling or dwelling unit to be repaired, altered, improved, vacated, closed, removed, or demolished, as provided in the original order of the codes administrator, and pending removal or demolition, to place a placard on that dwelling as provided by G.S. 160A 443 160D-1203 and section 38-40.

- (d) Appeals from orders of the codes administrator.
- (1) (...) or by a court of record upon petition made pursuant to G.D. 160A 446(f)160D-1208(d) and subsection (e) of this section.
- (e) *Petition to superior court by owner.* (...) to petition the superior court for a temporary injunction restraining the codes administrator pending a final disposition of the cause, as provided by G.S. 160A-446(f)160D-1208(d).

State Law Reference- Similar Provisions, G.S. 160A-443 160D-1203.

Sec. 38-40.- In rem action by codes administrator; placarding.

- (a) (...) or upon adoption by the board of aldermen of an ordinance authorizing and directing him to do so, as provided by G.S. 160A-443(5) 160D-1203 and (...).
- (b) (...) property is located and shall be indexed in the name of the property owner in the grantor index, as provided by G.S. 160A 443(5) 160D-1203.

Sec. 38-41.- Costs a lien on premises.

As provided by G.S. 160A-443(6) 160D-1203, the cost of any repairs, alterations or improvements, or of vacating and closing, or removal or demolition, caused to be made or done by the codes administrator pursuant to section 38-40 shall be a lien against the real property upon which such cost was incurred. The lien shall be filed, having priority, and be collected in the same manner as the lien for special assessments established by G.S. 160A-216 through 160A-238.

7. Amend Chapter 50- SUBDIVISIONS as follows:

Footnotes:

State Law Reference- Subdivision regulations G.S. 160A 371-160D-801 et seq.

8. <u>Amend Chapter 62 – Vegetation, ARTICLE II.- TREES AND SHRUBS, DIVISION 2.-</u> COMMUNITY APPEARANCE COMMISSION as follows:

Sec. 62-71.- Established; membership and terms.

(a) There is hereby established a community appearance commission (referred to in this division as the "commission") under the authority of G.S. 160A 451 160D-304.

Sec. 62-76.- Powers and duties.

The commission is authorized and empowered to undertake such actions reasonably necessary to the discharge and conduct of its duties and responsibilities as outlined in this division and G.S. 160A 452 160D-960.

ADOPTED this 8th Day of June , 2021. TOWN OF WAYNESVILLE J. Gary Caldwell, Mayor ATTEST: Eddie Ward, Town Clerk APPROVED AS TO FORM:

Ronald Sneed, Town Attorney

TOWN OF WAYNESVILLE BOARD OF ALDERMEN REQUEST FOR BOARD ACTION Meeting Date: 6-22-21

SUBJECT During the Board's June 8th meeting the Board of Aldermen appointed Ron Sneed as the Interim

Town Attorney. Mr. Sneed has drafted a contract for his services in this capacity. The Contract is

attached:

AGENDA INFORMATION:

Agenda Location: NEW BUSINESS

Item Number: E6

Department: Administration

Contact: Town Manager Rob Hites **Presenter:** Town Manager Rob Hites

BRIEF SUMMARY:

See above

MOTION FOR CONSIDERATION:

Approve the contract

FUNDING SOURCE/IMPACT: All Funds

ATTACHMENTS: Ron Sneed's proposed contract

MANAGER'S COMMENTS AND RECOMMENDATIONS:

FEE AGREEMENT

The Town of Waynesville hereby employs and retains the law firm of Ronald E. Sneed, P.A., Attorneys at Law, to serve as interim Town Attorney, to serve continuously until a new town attorney is selected and appointed.

In furtherance of our employment of said attorneys we agree as follows:

- 1. TO PAY ATTORNEYS A REASONABLE FEE which is reasonable based on the experience, reputation, and ability of the lawyer or lawyers performing the services, the likelihood that the acceptance of the particular employment will preclude other employment by the lawyer and the fee customarily charged in the locality for similar legal services.
- 2. AS PART OF the reasonable fee to be computed, the client agrees to pay attorney as follows:

\$500.00 each meeting to attend each regularly schedule meetings of the Board of Aldermen

\$250.00 each month to handle routine calls and messages to answer on simple matters not requiring research

\$225.00 per hour to attend special called meetings of the aldermen

\$275.00 per hour to handle litigation, special proceedings and other court matters

\$225.00 per hour for all other matters

Travel time will be billed at one-half the hourly rate. Travel time will not be charged for the trip to Waynesville for regularly scheduled meetings.

- 3. The total fee for services rendered shall be paid as follows: Within 25 days of billing, said billing to be done monthly, at the beginning of the month, for the work performed during the previous month.
- 4. TO REIMBURSE attorneys for any out of pocket expenses (including travel, telephone tolls, copying and postage) or advancements or costs made by them on my behalf in this matter.
- 5. Attorney reserves the right to cease work on this matter and withdraw from representation of client if payments are not received in a timely manner as described above.
- 6. Attorney reserves the right to cease work on this matter and withdraw from representation of client ignores or disregards attorney's advice as to how parts of the matter or the matter as a whole should be handled.
- 7. NO GUARANTEE or promises concerning the outcome or results of this cause or any decisions by any courts have been made by attorney.
- 8. Client understands that THIS IS NOT A CONTINGENT FEE CONTRACT and that the fee charged by attorney must be paid regardless of the outcome or result obtained in my legal matter.
- 9. At the conclusion of your matter, we will retain your legal file for a period of seven years after we close out the case. At the expiration of the seven year period, we will destroy these files unless you notify us in writing that you wish to take possession of them. Do be aware of the fact that we no longer retain hard copies of items in your file, unless a original document is retained for any reason. If you want your file, we will provide it in electronic form at no cost, but if you wish to have it printed we reserve the right to charge administrative fees and costs associated with retrieving, printing and delivering such files.

RONALD E. SNEED, P.A.	THE TOWN OF WAYNESVILLE, Client	
Ву:	Ву:	
Ronald E. Sneed, Attorney		
Date	Date	

TOWN OF WAYNESVILLE BOARD OF ALDERMEN REQUEST FOR BOARD ACTION

Meeting Date: June 22, 2021

SUBJECT:

Appointment of a Town of Waynesville Representative to the Haywood County Planning Board.

AGENDA INFORMATION:

Agenda Location: New Business

Item Number: E7

Department:Development ServicesContact:Elizabeth TeaguePresenter:Elizabeth Teague

BRIEF SUMMARY:

Haywood County has asked that the Town of Waynesville appoint someone to the County Planning Board to represent Town interests with regards to land use planning. In the past, this has been done by a Town Planning Board member, and Patrick McDowell has been the Town's representative for many years. Ginger Hain serves on the Town's Planning Board, was a member of the Comprehensive Land Use Plan Steering Committee and lives in the Waynesville ETJ. She has applied for multiple Board seats, including re-assignment on the Town Planning Board, and has volunteered to be considered for this position in lieu of her applications to the Cemetery Committee and Historic Preservation Commission. Given Ms. Hain's demonstrated experience, expertise and sensitivity to both county and municipal concerns, Development Services staff highly recommend her appointment.

MOTION FOR CONSIDERATION:

1. Motion to appoint Ginger Hain as the Town's representative to the County Planning Board.

FUNDING SOURCE/IMPACT:

N/A

ATTACHMENTS:

MANAGER'S COMMENTS AND RECOMMENDATIONS:

TOWN OF WAYNESVILLE BOARD OF ALDERMEN REQUEST FOR BOARD ACTION

Meeting Date: June 22, 2021

SUBJECT: Audit Proposal

AGENDA INFORMATION:

Agenda Location: New Business

Item Number: E8 Department: Finance

Contact: Autumn Lyvers, Finance Director Autumn Lyvers, Finance Director **Presenter:**

BRIEF SUMMARY:

Ray, Bumgarner, Kingshill, and Associates have submitted their audit proposal for FY2020-2021. The proposed audit fee for the current FYE 2020-2021 would be \$27,500 plus out of pocket costs. The fee for the preparation of the financial statements will be based on the actual time spent at the firm's standard hourly rate of \$95 per hour. The fee for all other services has increased from \$95 per hour to \$135 per hour. These fees are based on the anticipated cooperation from Town's personnel and the assumption that unexpected circumstances will not be encountered during the audit.

Note:

The only increase in fees paid over the last nine years is the hourly rate of \$135 for other services outside of the audit (\$27,500) and the writing of the financial statements (\$95 per hour). The audit fee and hourly rate for financial statements remain unchanged.

MOTION FOR CONSIDERATION:

To approve the audit proposal and authorize the Mayor to sign the Contract to Audit Accounts.

FUNDING SOURCE/IMPACT:

The proposed audit costs are currently funded in the proposed 2021-2022 budget.

6/15/2021

Autumn Lyvers, Finance Director

Date

ATTACHMENTS:

Audit Proposal

MANAGER'S COMMENTS AND RECOMMENDATIONS:

The	Governing Briefs	. 	
ot	Primary Government Uni	t (or charter holder)	—
	Town of Waynesvill	e	
and	Discretely Presented Co-	npchent Unit (DPCU) (if applicable)	
	Primary Government On	t, logother with DPCU (if appreable), hereinafter reterred to as Governmental Unit(s)	
and	Auxilitor Name	 - · · ·-	
	Ray, Burngamer, Kingshill & Associ, P.A.		
	Asdifer Address		
	385 N Haywood St.	, Ste. 3. Waynosville NC 28786	
	Horeinaltar referred to as	Auditor	
for	Fiscal Year Ending	Audif Resort Due Date	
	06/30/21	01/31/22	
		Mind be within four morellis of EVE	

hereby agree as follows.

- The Auditor shall audit all statements and disclosures required by U.S. generally accepted auditing standards (GAAS) and additional required legal statements and disclosures of all funds and/or divisions of the Governmental Unit(s). The non-major combining, and individual fund statements and schedules shall be subjected to the auditing procedures applied in the audit of the basic financial statements and an opinion shall be rendered in relation to (as applicable) the governmental activities, the business- type activities, the aggregate DPCUs, each major governmental and enterprise fund, and the aggregate remaining fund information (non-major government and enterprise funds, the internal service fund type, and the fiductary fund types)
- 2. At a minimum, the Auditor shall conduct his/her audit and render his/her report in accordance with GAAS. The Auditor shall perform the audit in accordance with Government Auditing Standards if required by the State Single Audit Implementation Act, as codified in G.S. 150-34. If required by OMB Uniform Administration Requirements, Cost Principles, and Audit Requirements for Federal Awards (Uniform Guidance) and the State Single Audit Implementation Act, the Auditor shall perform a Single Audit. This audit and all associated audit documentation may be subject to review by Federal and State agencies in accordance with Federal and State laws, including the staffs of the Office of State Auditor (OSA) and the Local Government Commission (LGC). If the audit requires a federal single audit performed under the requirements found in Subpart F of the Uniform Guidance (§200.501), it is recommended that the Auditor and Governmental Unit(s) jointly agree, in advance of the execution of this contract, which party is responsible for submission of the audit and the accompanying data collection form to the Federal Audit Clearinghouse as required under the Uniform Guidance (§200.512).

If the audit and Auditor communication are found in this review to be substandard, the results of the review may be forwarded to the North Carolina State Board of CPA Examiners (NC State Board).

- 3. If an entity is determined to be a component of another government as defined by the group audit standards, the entity's auditor shall make a good faith effort to comply in a timely manner with the requests of the group auditor in accordance with AU-6 §600.41 §600.42.
- 4. This contract contemplates an unmodified opinion being rendered. If during the process of conducting the audit, the Auditor cetermines that it will not be possible to render an unmodified opinion on the financial statements of the unit, the Auditor shall contact the LGC Staff to discuss the circumstances leading to that conclusion as soon as is practical and before the final report is issued. The audit shall include such tests of the accounting records and such other auditing procedures as are considered by the Auditor to be necessary in the circumstances. Any limitations or restrictions in scope which would lead to a qualification should be fully explained in an altechment to this contract.
- 5. If this audit engagement is subject to the standards for audit as defined in *Government Auditing Standards*, 2018 revision, issued by the Comptroller General of the United States, then by accepting this engagement, the Auditor warrants that he/she has met the requirements for a peer review and continuing education as specified in *Government Auditing Standards*. The Auditor agrees to provide a copy of the most recent peer review report to the Governmental Unit(s) and the Secretary of the LGC prior to the execution of an audit contract. Subsequent submissions of the report are required only upon report expiration or upon auditor's receipt of an updated peer review report. If the audit firm received a peer review rating other than pass, the Auditor shall not contract with the Governmental Unit(s) without first contacting the Secretary of the LGC for a peer review analysis that may result in additional contractual requirements.

If the addit engagement is not subject to *Government Accounting Standards* or if financial statements are not prepared in accordance with U.S. generally accepted accounting principles (GAAP) and fail to include all disclosures required by GAAP, the Auditor shall provide an explanation as to why in an attachment to this contract or in an amendment.

- 6. It is agreed that time is of the essence in this contract. All audits are to be performed and the report of audit submitted to LGC Staff within four months of fiscal year end. If it becomes necessary to amend this due date or the audit fee, an amended contract along with a written explanation of the datay shall be submitted to the Secretary of the LGC for approval.
- 7. It is agreed that GAAS include a review of the Governmental Unit's (Units') systems of internal control and accounting as same relate to accountability of funds and adherence to budget and law requirements applicable thereto; that the Auditor shall make a written report, which may or may not be a part of the written report of audit, to the Governing Board setting forth his/her findings, together with his recommendations for improvement. That written report shall include all matters defined as "significant deficiencies and material weaknesses" in AUIC 265 of the AICPA Professional Standards (Clarified). The Auditor shall file a copy of that report with the Secretary of the LGC.
- 8. All local government and public authority contracts for audit or audit-related work require the approval of the Secretary of the LGC. This includes annual or special audits, agreed upon procedures related to internal controls, bookkeeping or other assistance necessary to prepare the Governmental Unit's (Units') records for audit, financial statement preparation, any finance-related investigations, or any other audit- related work in the State of North Carolina. Approval is not required on contracts and Invoices for system Improvements and similar services of a non-auditing nature.
- 9. Invoices for services rendered under these contracts shall not be paid by the Governmental Unit(s) until the invoice has been approved by the Secretary of the LGC. (This also includes any progress billings.)[G.S. 158-34 and 115C-447] All invoices for Audit work shall be submitted in PDF format to the Secretary of the LGC for approval. The invoice marked 'approved with approval date shall be returned to

the Auditor to present to the Governmental Unit(s) for payment. This paragraph is not applicable to contracts for audits of hospitals.

- 10. In consideration of the satisfactory performance of the provisions of this contract, the Governmental Unit(s) shall pay to the Auditor, upon approval by the Secretary of the LGC if required, the fee, which includes any costs the Auditor may incur from work paper or peer reviews or any other quality assurance program required by third parties (federal and state grantor and oversight agencies or other organizations) as required under the Federal and State Single Aud LActs, This does not include fees for any pre-issuance reviews that may be required by the NC Association of CPAs (NCACPA) Peer Review Committee or NC State Board of CPA Examiners (see Item 13)
- 11. If the Governmental Unit(s) has/have outstanding revenue bonds, the Auditor shall submit to LGC Staff, either in the notes to the audited financial statements or as a separate report, a calculation demonstrating compliance with the revenue bond rate coverant. Additionally, the Auditor shall submit to LGC Staff simultaneously with the Governmental Unit's (Units') audited financial statements any other bond compliance statements or additional reports required by the authorizing bond documents, unless otherwise specified in the bond documents.
- 12. After comploting the audit, the Auditor shall submit to the Coverning Board a written report of audit. This report shall include, but not be limited to, the following information: (a) Management's Discussion and Analysis, (b) the financial statements and notes of the Governmental Unit(s) and all of its component units prepared in accordance with GAAP, (c) supplementary information requested by the Governmental Unit(s) or required for full disclosure under the law, and (d) the Auditor's opinion on the material presented. The Auditor shall fumled the required number of copies of the report of audit to the Governing Board uponcompletion.
- 13. If the audit firm is required by the NC State Board, the NCACPA Peer Review Committee, or the Secretary of the LGC to have a pre-issuance review of its audit work, there shall be a statement in the ongagomont lotter indicating the pre-issuance review requirement. There also shall be a statement that the Governmental Unit(s) shall not be billed for the pre-issuance review. The pre-issuance review shall be performed prior to the completed audit being submitted to LGC Staff. The pre-issuance review report shall accompany the audit report upon submission to LGC Staff.
- 14. The Auditor shall submit the report of audit in PDF format to LGC Staff. For audits of units other than hospitals, the audit report should be submitted when (or prior to) submitting the final invoice for services rendered. The report of audit, as filed with the Secretary of the LGC, becomes a matter of public record for inspection, review and copy in the offices of the LGC by any interested parties. Any subsequent revisions to these reports shall be sent to the Secretary of the LGC along with an Audit Report Reissued Form (available on the Department of State Treasurer website). These audited financial statements, excluding the Auditors' opinion, may be used in the preparation of official statements for debt offerings by municipal bond rating services to fulfill secondary market disclosure requirements of the Securities and Exchange Commission and for other lawful purposes of the Governmental Unit(s) without requiring consent of the Auditor. If the LGC Staff determines that corrections need to be made to the Governmental Unit's (Units') financial statements, those corrections shall be provided within three business days of notification unless another ceadline is agreed to by EGC Staff.
- 15. Should direumstances disclosed by the audit call for a more detailed investigation by the Auditor than necessary under ordinary direumstances, the Auditor shall inform the Governing Board in writing of the need for such additional investigation and the additional compensation required therefore. Upon approval by the

Secretary of the LGC, this contract may be modified or amended to include the increased time, compensation, or both as may be agreed upon by the Governing Board and the Auditor.

- 16. If an approved contract needs to be modified or amended for any reason, the change shall be made in writing and pre-audited if the change includes a change in audit foe (pre-audit requirement does not apply to charter achools or hospitals). This amended contract shall be completed in full, including a written explanation of the change, signed and dated by all original parties to the contract. If shall then be submitted to the Secretary of the LGC for approval. No change to the audit contract shall be effective unless approved by the Secretary of the LGC, the Governing Board, and the Auditor.
- 17. A copy of the engagement letter, lesued by the Auditor and signed by both the Auditor and the Governmental Unit(s), shall be attached to this contract, and except for fees, work, and terms not related to audit services, shall be incorporated by reference as if fully set forth harein as part of this contract. In case of conflict between the terms of the engagement fetter and the terms of this contract, the terms of this contract shall take precedence. Engagement letter terms that conflict with the contract are deemed to be vold unless the conflicting terms of this contract are specifically deleted in Item 28 of this contract. Engagement letters containing indemnification clauses shall not be accepted by LGC Staff.
- Special provisions should be limited. Please list any special provisions in an attachment.
- 19. A separate contract should not be made for each division to be audited or report to be submitted. If a DPCU is subject to the audit requirements detailed in the Local Government Budget and Fiscal Control Act and a separate audit report is issued, a separate audit contract is required. If a separate report is not to be issued and the DPCU is included in the primary government audit, the DPCU shall be named along with the primary government on this audit contract. DPCU Board approval date, signatures from the DPCU Board chairman and lineage officer also shall be included on this contract.
- 20. The contract shall be executed, pre-audited (pre-audit requirement does not apply to charter schools or nospitals), and physically signed by all parties including Governmental Unit(s) and the Auditor, then submitted in PDF format to the Secretary of the LGC.
- 21. The contract is not valid until it is approved by the Secretary of the LGC. The staff of the LGC shall notify the Governmental Unit and Auditor of contract approval by email. The audit should not be started before the contract is approved.
- 22. Retention of Client Records, Auditors are subject to the NC State Board of CPA Examiners' Retention of Client Records Rule 21 NCAC 08N .0305 as it relates to the provision of audit and other extest services, as well as non-attest services. Clients and former clients should be familiar with the requirements of this rule prior to requesting the return of records.
- 23. This contract may be terminated at any time by mutual consent and agreement of the Governmental Unit(s) and the Auditor, provided that (a) the consent to terminate is in writing and signed by both parties, (b) the parties have agreed on the fee amount which shall be paid to the Auditor (if applicable), and (c) no termination shall be effective until approved in writing by the Secretary of the LGC.
- 24. The Governmental Unit's (Units') failure or forbearance to enforce, or waiver of, any right or an event of breach or default on one occasion or instance shall not constitute the waiver of such right, breach or detault on any subsequent occasion or instance.
- 25. There are no other agreements between the parties hereto and no other agreements relative hereto that shall be enforceable unless entered into in accordance with the procedure set out herein and approved by the Secretary of the LGC.

- 26. E-Verify, Auditor shall cumply with the requirements of NCGS Chapter 64 Article 2, Further, If Auditor utilizes any subcontractor(s). Auditor shall require such subcontractor(s) to comply with the requirements of NCGS Chapter 64, Article 2.
- 27. Applicable to audits with fiscal year ends of June 30, 2020 and later. For all non-attost services, the Auditor shall adhere to the independence rules of the AICPA Professional Code of Conduct and Governmental Auditing Standards, 2018 Revision (as applicable). Financial statement preparation assistance shall be deemed a "significant threat" requiring the Auditor to apply safeguards sufficient to reduce the threat to an acceptable level. If the Auditor cannot reduce the threats to an acceptable level, the Auditor cannot complete the audit. If the Auditor is able to reduce the threats to an acceptable level, the documentation of this determination, including the safeguards applied, must be included in the audit workpapers.

All non-attest service(s) being performed by the Auditor that are necessary to perform the audit must be identified and included in this contract. The Governmental Unit shall designate an individual with the suitable skills, knowledge, and/or experience (SKE) necessary to oversee the services and accept responsibility fur the results of the services performed. If the Auditor is able to identify an individual with the appropriate SKE, s/he must document and include in the audit workpapers how he/she reached that conclusion. If the Auditor determines that an individual with the appropriate SKE cannot be identified, the Auditor cannot perform both the non-attest service(s) and the audit. See "Fees for Audit Services" page of this contract to disclose the person identified as having the appropriate SKE for the Governmental Unit.

- 28. Applicable to audits with fiscal year ends of June 30, 2021 and later. The auditor shall present the audited financial statements including any compliance reports to the government unit's governing body or audit committee in an official meeting in open session as soon as the audited financial statements are available but not later than 45 days after the submission of the audit report to the Secretary. The auditor's presentation to the government unit's governing body or audit committee shall include:
 - a) the description of each finding, including all material weaknesses and significant deficiencies, as found by the auditor, and any other issues related to the internal controls or fiscal health of the government unit as disclosed in the management letter, the Single Audit or Yellow Book reports, or any other communications from the auditor regarding internal controls as required by current auditing standards set by the Accounting Standards Board or its successor.
 - b) the status of the prior year audit findings;
 - b) the varues of Financial Performance Indicators based on information presented in the audited financial statements; and
 - d) notification to the governing body that the governing body shall develop a "Response to the Auditor's Findings, Recommendations, and Fiscal Matters," if required under 20 NCAC 03 .0508.
- Information based on the audited financial statements shall be submitted to the Secretary for the purpose
 of identifying Financial Performance Indicators and Financial Performance Indicators of Concern.

(not applicable to haspital contracts)

i

FEES FOR AUDIT SERVICES

Code of Conduct (as applicable) and Go this contract for specific requirements. The presented to the LGC without this information	_
Financial statements were prepared by:	☑ Audito- ☐ Governmental Unit ☐ Third Party
	Unit designated to have the suitable skills, knowledge, and/or the non-attest services and accept responsibility for the
Name: Iti	Ve and Unit / Company: Email Address:
Autumn Lyvers Fir	nance Director alyvers@waynesvillene.gov
OR Not Applicable 📋 (feertification of SKE indi	rudual not applicable for GAAS-only audit or audits with FYEs prior to June 30, 2629
(AFIRs), Form 990s, or other services not in the engagement letter but may not boill LGC. See Herns 8 and 19 for details on of	
contract (if required) the Auditor may subrof the billings for the last annual audit of the provided below conflict with the capicalculation prevails. All invoices for a NCAC .0503 shall be submitted to the Colbefore approval is a violation of law. (This with audits of hospitals).	udited financial roport, applicable compliance reports and amended nit invoices for approval for services rendered, not to exceed 75% he unit submitted to the Secretary of the LGC. Should the 75% cap lated by LGC Staff based on the billings on file with the LGC, the services rendered in an audit engagement as defined in 20 mmission for approval before any payment is made. Payment paragraph not applicable to contracts and invoices associated.
Primary Government Unit	Town of Waynesville
Audit Fee	\$ 27500
Additional Fees Not included in Audit Fee:	1*
	[*
Fee per Major Program	\$ \$ 95.00
Writing Financial Statements	
All Other Non-Attest Services	\$ 135.0
75% Cap for Interim Invoice Approval <u>(not appli</u> ent/is to hospilal contracts)	\$ 20,625.00
	DPCU FEE3 (if applicable)
Discretely Presented Component Unit	
Aucit Fee	\$
Additional Fees Not Included in Audit Fee:	
Fee per Major Program	s
Writing Financial Statements	\$
All Other Non-Attest Sorvices	s.
75% Cap for Interim Invoice Approval	

Date

SIGNATURE PAGE

AUDIT FIRM

Audit Firm* Ray, Burngarner, Kingshill & Assoc., P.A.	
Authorized Firm Representative (typed or printed)* Nancy D. Lux, CPA	Signature*
Date* 6-14-21	Email Address" n/ux@rbk-cpa.com

GOVERNMENTAL UNIT

Governmental Unit* Town of Waynesville		
Date Primary Government Unit Governing Board App (G.S. 159-34(a) or G.S. 115C-447(a))	proved Audit Contract*	1
Mayor/Chairperson (typed or printed)* Gary Caldwell, Mayor	Signature*	- Lit
Date	Email Address gcaldwell@waynesvillenc.gov	

GOVERNMENTAL UNIT - PRE-AUDIT CERTIFICATE

Email Address

Required by G.S. 159-28(a1) or G.S. 115C-441(a1). Not applicable to hospital contracts.

This instrument has been pre-audited in the manner required by The Local Government Budget and Fiscal Control Act or by the School Budget and Fiscal Control Act.

Primary Governmental Unit Finance Officer* (typed or primare)	Signature*
Autumn Lyvers	autum de
Date of Pre-Audit Certificate*	Email Address* alyvers@waynesvillenc.gov

SIGNATURE PAGE – DPCU (complete only if applicable)

DISCRETELY PRESENTED COMPONENT UNIT

DPCU*	
Date DPCU Governing Board Approved Audit Contract* (Ref. G.S. 159-34(a) or G.S. 115C-447(a))	
DPCU Chairperson (typed or printed)*	Signature*
Dete'	Email Address*
Chair of Audit Committee (typed or printed, or "NA")	Signature
Date	Email Address

DPCU - PRE-AUDIT CERTIFICATE

Required by G S, 159-28(a1) or G.S, 115C-441(a1). Not applicable to hospital contracts.

This instrument has been pre-audited in the manner required by The Local Government Budget and Fiscal Control Act or by the School Budget and Fiscal Control Act.

DPCU Finance Officer (typed or printed)*	Signature*	
Date of Pre-Audit Certificate*	Email Address*	

Remember to print this form, and obtain all required signatures prior to submission.

TOWN OF WAYNESVILLE BOARD OF ALDERMEN REQUEST FOR BOARD ACTION

Meeting Date: June 22, 2021

SUBJECT: Budget amendment for rehabilitation of "Old Haywood County Hospital"

(Brookmont Lofts)

AGENDA INFORMATION:

Agenda Location: New Business

Item Number:E9Department:Finance

Contact: Autumn Lyvers, Finance Director **Presenter:** Autumn Lyvers, Finance Director

BRIEF SUMMARY:

In January 2019 the Board of Aldermen adopted resolution #R-03-19 pledging financial assistance to the rehabilitation of the "Old Haywood County Hospital" in the form of waivers, grants, and public improvements. The resolution listed the following assistance totaling \$172,042:

- 1. Waive permitting, taps and system development fees through a \$7,200 grant.
- 2. Provide the necessary water and sewer to the master meter at an estimated value of \$58,000.
- 3. Construct sidewalks to meet ADA and the Town's Development standards in an amount not to exceed \$106,842.

Sidewalks have been installed at the site, and water/sewer infrastructure completed. Approval of the attached budget amendment will allow payment of the financial assistance as prescribed in the resolution.

MOTION FOR CONSIDERATION:

To approve the budget amendment as presented.

FUNDING SOURCE/IMPACT:

The \$172,042 in financial assistance will be paid from the General Fund Balance.

Autumn Lyvers, Finance Director Date

ATTACHMENTS:

Budget Amendment Resolution #R-03-19

MANAGER'S COMMENTS AND RECOMMENDATIONS:

RESOLUTION NR-03-19

A RESOLUTION PLEDGING FINANCIAL ASSISTANCE TO THE REHABILITATION OF THE "OLD HAYWOOD COUNTY HOSPITAL" IN THE FORM OF WAIVERS, GRANTS PUBLIC IMPROVEMENTS

WHEREAS, The Board of Aldermon acting as a Redevelopment Authority as defined in GS 160A-505 recognizes that areas of blight exist in the Town; and

WHEREAS, The Board of Aldermen of the Town of Waynesville hereby initiates the project and has invested community development resources in the Half Mile area within the last ten years as duffined in the "North Main and Old Hospital Bedevelopment Plan"; and

WHEREAS, The Board has authorized a study of an area of one half mile surrounding "The Old Haywood County Hospita!" and found that the land area of the "Old Hospita" and the "County Annex meets the statutory definition of "blighted orna"; and

WHEREAS, the Board finds that the rehabilitation of this area is necessary to address deterioration and blight in the interest of the public health, safety, morals, and or weifare of the residents of waynesville; and

WHEREAS, the Planning Board recommends that the Roard of Alderman designate the "Ok: Hospital" and "County Annex" as a redevelopment area; and

WHEREAS, the lack of eafe, sanitary affordable housing K one of the most critical needs within the "Old-Hespital" and "County Annex" redevelopment area"; and

WHEREAS the Board of Aldermen have the opportunity to partner with Haywood County and Landmark Asset Services inc. to rehabilitive the "Old Haywood County Hospital" into an affordable hearing community known at the "Brookmont Lofts".

BE IT RESOLVED BY THE BOARD OF ALDERMEN OF THE TOWN OF WAYNESVILLE THAT (T): OFFER THE FOLLOWING WAIVERS, GRANTS AND SERVICES:

- Waive permitting, taps and system developments feasith rough a \$7,200 grant.
- Provide the necessary water and sewer to the master meter at an estimated value of \$58,000.
- Construct sidewalks to meet ADA and the Town's Development Standards in an amount not to exceed \$206,842.

Adopted this the 8th day of January, 2019.

attest:

Edale Ward, Town Clark

Town of Waynesville

Gavin A. Brown, Mayor

TOWN OF WAYNESVILLE BOARD OF ALDERMEN REQUEST FOR BOARD ACTION

Meeting Date: June 22, 2021

SUBJECT: Grant Project Ordinance establishing a Special Revenue Fund to account for grant revenues and related expenditures, including funds to be received under the American Rescue Plan Act of 2021 (ARP).

AGENDA INFORMATION:

Agenda Location: New Business

Item Number: E10 Department: **Finance**

Contact: Autumn Lyvers, Finance Director Presenter: Autumn Lyvers, Finance Director

BRIEF SUMMARY:

As a non-entitlement municipality receiving our American Rescue Plan (ARP) funding through the State of North Carolina Pandemic Recovery Office, we are required to account for ARP funds in a separate grant projects fund so that these federal funds will not be co-mingled with other general revenues.

Approval of the attached Grant Projects Ordinance will establish the separate special revenue fund to account for ARP revenue, and appropriate ARP funds to be spent on the following items in the upcoming fiscal year:

First Allocation	FY2022
Police Vehicles	\$ 250,000
Fire Vehicles	\$ 80,000
Storm Sewer Upgrade – Kentucky Ave	\$ 90,000
Garbage Can Replacements	\$ 289,000
Greenway Bridge PARTF Match	\$ 210,000
COVID Vaccination Incentive	\$ 19,000
Helping Hands (Year 1)	\$ 35,000
Total Allocation	\$ 973,000

American Rescue Plan funding identified for water and sewer infrastructure will be accounted for directly in the Water and Sewer Enterprise Funds as prescribed by the State Treasurer's Office.

MOTION FOR CONSIDERATION:

To adopt the attached Grant Project Ordinance 1) authorizing the Finance Director to set up a special revenue fund to account for multiyear grant activity and 2) appropriating \$973,000 of ARP funds for expenditures outlined above.

FUNDING SOURCE/IMPACT:

No funding impact to the General Fund.

6/15/2021 Date

Autumn Lyvers, Finance Director

ATTACHMENTS:

1. Grant Project Ordinance

MANAGER'S COMMENTS AND RECOMMENDATIONS:

Ordinance No. O-10-21

Grant Project Ordinance

WHEREAS, the Board of Aldermen of the Town of Waynesville wishes to establish a special revenue fund to account for multiyear grant awards.

NOW, THEREFORE, BE IT ORDAINED by the Board of Aldermen of the Town of Waynesville that the following grant project ordinance is hereby adopted:

Section 1. The following sources of grant funds are anticipated to be available:

Restricted Intergovernmental Rev	venue	
American Rescue Plan Act	273350-433010-23001	\$ 973,000
Total Revenues		\$ 973,000

Section 2. The following amounts are appropriated for authorized expenditures of the grant funds:

Police Department - Vehicles	274310-545400	\$	250,000
Fire Department - Vehicles	274340-545400		80,000
Streets & Sanitation – Capital Improv.	274510-545900		90,000
Streets & Sanitation – Materials/Supplies	274510-532920		289,000
Parks & Recreation – Greenways	276125-536410		210,000
Special Appropriation – Contributions 275300-53			35,000
Administration – Health and Wellness 274120-511845			19,000
Total Appropriations			973,000

Section 3. The additional appropriation or closure of grant funds and expenditure authorizations will be submitted to the Board of Aldermen as an amendment to the Grant Project Ordinance.

Adopted this 22nd day of June 2021.

Town of Waynesville

J. Gary Caldwell
Mayor

Attest:

Eddie Ward
Town Clerk

Approved As To Form:

Town Attorney

TOWN OF WAYNESVILLE BOARD OF ALDERMEN REQUEST FOR BOARD ACTION June 22, 2021

SUBJECT: Reimbursement agreement for Fire Stion #2.1 associated costs

AGENDA INFORMATION:

•

Agenda Location: NEW BUSINESS

Item Number: E11

Department:AdministrationContact:Rob HitesPresenter:Rob Hites

BRIEF SUMMARY:

Autumn and I had a discussion regarding the pros and cons of refinancing the USDA and BB&T loans including rolling the purchase of the fire station property and environmental tests into the refinancing. Mr. Jessup stated that USDA encourages refinancing of its debts and does not charge any pre-payment penalties. We will have to study the loan documents with BB&T to determine if we can roll the \$1,000,000 remaining into the new refinancing agreement. Mr. Jessup states that we can roll the purchase of the Fire Station land and the environmental study fees into the loan if we adopt a pre-payment resolution (attached).

MOTION FOR CONSIDERATION:

Adopt the pre-payment resolution

FUNDING SOURCE/IMPACT: General

ATTACHMENTS: Resolution

MANAGER'S COMMENTS AND RECOMMENDATIONS:

Mr. Jessup states that if we refinance the Fire Station and roll the fire station #2 land into the loan the Town can use Fire Station #1 as collateral for the land. It is a good time to refinance. Mr. Jessup can begin to draft the necessary RFP to lenders to test the market for such a refinancing. The Board will not be obligated to execute such a refinancing if it finds the proposals unsuitable.

RESOLUTION DECLARING THE INTENT TO REIMBURSE EXPENDITURES -- FIRE AND EMERGENCY SERVICES FACILITY

WHEREAS, the Finance Officer has described to the Board the desirability of adopting a resolution, as provided under federal tax law, to facilitate the Town's using financing proceeds to restore the Town's funds when the Town makes capital expenditures prior to closing on a bond issue or other financing.

BE IT RESOLVED by the Town as follows:

- 1. The project is for the purchase of land, design and construction of a fire and emergency services facility. The project is to be financed. The currently expected type of financing is an installment financing contract as allowed for under N.C.G.S 160A-20. The currently expected maximum amount of bonds or other obligations to be issued or contracted for the project is \$ 5,000,000.
- 2. Funds that have been advanced or may be advanced from the general fund for project costs are intended to be reimbursed from the financing proceeds.
- 3. The Town intends for the adoption of this resolution to be a declaration of its official intent to reimburse itself from financing proceeds for project cost expenditures.

Adopted this	day of	2021.

TOWN OF WAYNESVILLE BOARD OF ALDERMEN REQUEST FOR BOARD ACTION Meeting Date: June 22, 2021

SUBJECT: Refinancing of USDA and BB&T Loan including purchase of fire station land

AGENDA INFORMATION:

Agenda Location: NEW BUSINESS

Item Number: E12

Department: Administration
Contact: Rob Hites
Presenter: Rob Hites

BRIEF SUMMARY:

Alderman Dickson requested that Ms. Lyvers and I discuss the possibility of refinancing the 4%, 40-year loan for Fire Station #1. We contacted the Town's bond attorney Bob Jessup and he stated that the USDA welcomes refinancing loans so the principal can be used for new loans. He stated that he could draft an RFP on the refinancing of the loan and send it to lenders. They would supply proposals for refinancing USDA debt at no cost or obligation to the Town. The Town also owes BB&T approximately \$1,000,000 for a loan associated with the Town Hall. Should the Board be interested in refinancing the USDA debt the staff would also request Mr. Jessup study this agreement to determine if it could also be refinanced without pre-payment penalty. Mr. Jessup stated that if the Board adopt a "reimbursement agreement" ahead of the purchase of the land it could roll the \$400,000 purchase of the fire station land into the borrowing as well (That agreement appears in this agenda).

MOTION FOR CONSIDERATION:

Request Bob Jessup and the staff to draft an RFP to be sent out to lending institutions and determine if refinancing the debt would be advantageous to the Town.

FUNDING SOURCE/IMPACT: General

ATTACHMENTS: None

MANAGER'S COMMENTS AND RECOMMENDATIONS:

With the exception of Mr. Jessup's fees there is no cost involved in testing the refinancing waters to determine if refinancing the USDA and BB&T debt would be advantageous to the Town. Should the Board adopt a "reimbursement agreement" it may also finance the purchase of the Fire Station #2 land and as well as the environmental studies.

TOWN OF WAYNESVILLE BOARD OF ALDERMEN REQUEST FOR BOARD ACTION Meeting Date: 6/22/21

SUBJECT: Approve purchase of 3.6 acres of property located at Mosaic Place

AGENDA INFORMATION:

Agenda Location: NEW BUSINESS

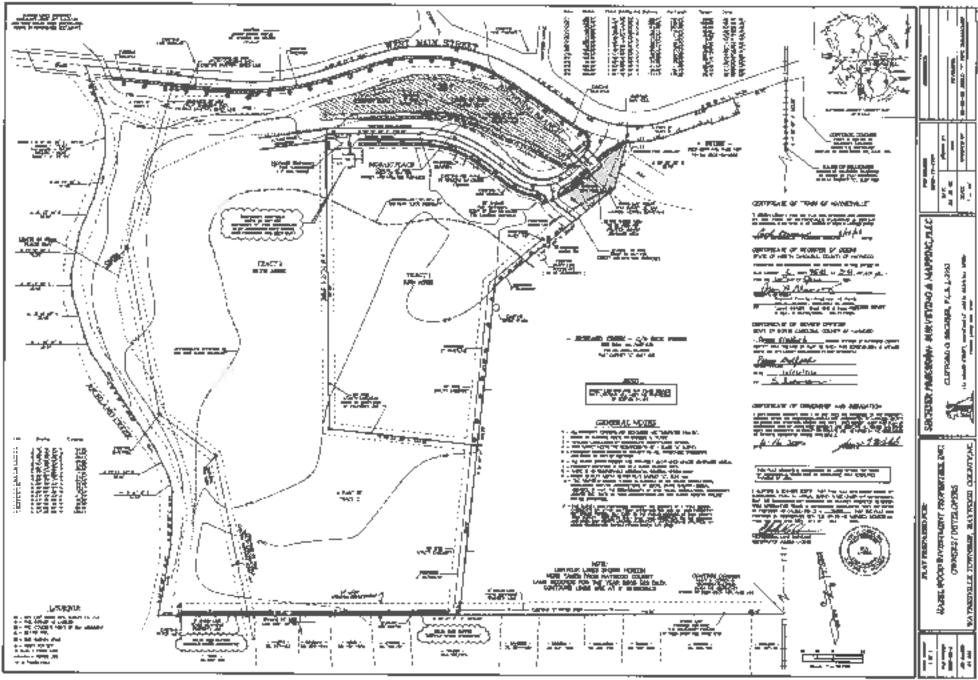
Item Number: E13

Department: Administration
Contact: Rob Hites
Presenter: Rob Hites

BRIEF SUMMARY:

The Town contracted with Glenn Tolar to purchase 3.6 acres of property located at Mosaic Place in Hazelwood. The property is the site of a burned and demolished tannery. After the tannery burned much of the structure was buried on site. The Town has conducted both a Phase I and Phase II environmental study on the site to ensure that there are no structural or environmental issues that would prevent the Town from constructing a fire station on the site. The Phase I study indicated that the first five feet of soil contained the remnants of the tannery which made standard footings and slab construction very difficult. The Phase I study also recommended that further study be made to ensure that the site not contain contaminants that would violate EPA standards for location of a fire station. The Town engaged Bunnell Lammons (BLE) to conduct a Phase II study to determine if environmental contamination exits in such quantities that a Fire Station would not be permitted to be constructed on the site. The Town also requested that the firm's structural engineers study the reports and determine if they could recommend a foundation design that would resolve the problem of constructing a structure on the site without removing the unstable soil.

The Phase II reports located several chemicals in the soil that were on EPA's list of contaminants but not in such quantity that they would prohibit a Fire Station from being located on the site. They stated that the building slab and parking lot would serve to encapsulate the material from the building. In addition to the findings on the contaminants the firm also recommend a foundation system where rock filled piles are installed to carry the load of the building to load bearing soil located approximately 5-7 feet below the present surface.


MOTION FOR CONSIDERATION:

Approve the purchase of the 3.67 site located a 33 Mosaic Drive for a purchase price of \$405,000 dollars and to appropriate the funds from the General Fund Balance. (The additional \$5,000 is intended to cover closing costs, attorney's fees, etc.)

FUNDING SOURCE/IMPACT: General Fund Balance

ATTACHMENTS: Phase II Environmental Study

MANAGER'S COMMENTS AND RECOMMENDATIONS: Approve the purchase of the property.

June 4, 2021

Attention:

Mr. Preston Gregg, P.E., PMP,

Town of Waynesville, 129 Legion Drive,

Waynesville, North Carolina 28786

Subject:

Geotechnical Exploration Addendum

Waynesville Fire Station Waynesville, North Carolina BLE Project No: J20-14542-02

Dear Mr. Gregg:

Bunnell-Lammons Engineering, Incorporated (BLE) is pleased to present this letter addendum to our geotechnical report for the proposed Waynesville Fire Station located in Waynesville, North Carolina. Initial work and recommendations were outlined in BLE Report J20-14542-02 dated March 3, 2020. Since that time, additional environmental considerations have come to light during a Phase II study performed by BLE. Poor fill materials were encountered during the geotechnical exploration and an economic remediation solution at that time appeared to consist of undercut and replacement. However, with the potential environmental stipulations and costs, it now appears more appropriate to support the structure with aggregate piers. In general, aggregate piers will improve the existing fill soil so that a spread footing foundation can be utilized, without producing significant spoils. Based on the boring data and in anticipation of ground improvement ultimately designed by a Specialty Contractor, an allowable bearing capacity of up to 4,000 psf can be used for design.

Sincerely,

BUNNELL LAMMONS ENGINEERING INC. Firm Registration #: C-1538

Jesse R Jacobson, P.1: Branch Manager

North Carolina License # 0309

Report of Analysis

Bunnell-Lammons Engineering, Inc.

6004 Ponders Court Greenville, SC 29615 Attention: Dan Matz

Project Name: Waynesville Fire Station

Project Number: J21-14542-003

Lot Number: WE10034

Date Completed:05/25/2021

05/26/2021 2:17 PM Approved and released by:

Project Manager II: Lucas Odom

The electronic signature above is the equivalent of a handwritten signature.

This report shall not be reproduced, except in its entirety, without the written approval of Pace Analytical Services, LLC.

Appendix C Laboratory Analytical Results

Page 1 Date 05/07/21 Field Personnel B. Davis General weather Conditions Clear Well Diameter (D) inch of 9.00 feet(ft) BGS Ambiert Air Temperature (°C) 15 Facility Name 563 Hazalwood Ave. Site ID# Not Applicable *Free Product Thickness Quality Assurance Total Well Depth (TWD) 9.00 _ft BTOC Depth to Groundwater (DGW) 4.51 ft BTGC pH Sensor: Oakton 35530-62 35630-32 Conductivity Sensor: serial no 324976 serial no 324976 pH =4.0 40 Standard 15,000 pH = 7.07.0 Standard 1,413 pH = 10.010.0 Standard Standard 84 Chain of Custody Total Volume of Water Purged Before Sampling 0.5 B Davis 5-10-21 / 0856 Pace 5-10-21 / 0856 *If free product is present over 1/8 inch, sampling will not be required. Reinquished by Date/Time Received by Date/Time 2nd Initial 1st 485 3rd Volume Purged (gallons) 0.2 0.4 0.6 Time (military) 1030 1035 1040 1045 pH (s.u) 6.45 6.61 6.45 6.40 Specific Conductivity (us) 468.4 486.9 481.9 472.4 Water Temperature (°C) 15.5 15.7 15.8 15.7 Turbidity* 3 3 1 1 *Turbidity subjective - 3-Turbid, 2- Slightly Turbid, 1-Clear Well sampled on 5-7-21 at 1050. Remarks:

Date	05/07/21					Well #	GW-4				
Field Personnel			B Davis						359		
General weather	r Conditions		Clear			Well Diam	eter (D)	- 19	inch of	9.50	feet(ft) BG
Ambient Air Ten	nperature (°C)		15								
Facility Name	563 Hazelwoo	od Ave	Site ID#	Not /	Applicable				8970	n	
		Quality Assurar	nce				luct Thickness Depth (TWD)		NA 9.50	я втос	
3500	ATDACK NAME	TE SEASON.	0190 XIVASE		525005050000000000000000000000000000000	Depth to G	iroundwater (D	GW)	5.71	n BTOC	
pH Sensor:	Oakton 356	30-62	Conductiv	ity Sensor:	35630-32						
serial no	324976	1	seral no.		24976						
gH =4.0	40		Standard	- 1	5.000						
H = 7.0 7.0			Standard 1,413								
pH = 7.0	7.0										
pH = 7.0 pH = 10.0	7.0 10.0		Standard Standard		1,413 447 84					ne.	MARIET
pH = 7.0 pH = 10.0	10.0	Chain of Custo 5-10-21 / 0856	Standard Standard		447			.rged Before Si over 1/8 inch.		0.6 If be required	_gals
pH = 70 pH = 100	10.0		Standard Standard	ice:	647 84						gals
pH = 70 pH = 100	10.0 Davis	5-10-21 / 0856	Standard Standard dz Pa	ice:	5-10-21 / 0856						gals
pH = 70 pH = 100	10.0 Davis uished by	5-10-21 / 0856 Date/Time	Standard Standard dz Pa Receiv	ice ved by	447 84 5-10-21 / 0856 Diste/Time	*If free pro	duct is present	over 1/8 inch.	sampling will no	t be required.	=
pH = 70 pH = 100 B. Reling	Davis uished by ged (gallons)	5-10-21 / 0856 Date/Time	Standard Standard dy Pa Recei	ice ved by 2nd	447 84 5-10-21 / 0856 Date/Time	*If free pro	duct is present	over 1/8 inch.	sampling will no	t be required.	=
pH = 70 pH = 100 B. Relinqu	Davis uished by ged (gallons)	5-10-21 / 0856 Date/Time Initial	Standard Standard dy Pa Recei-	ved by 2nd 0.4	447 84 5-10-21 / 0856 Date/Time 3rd 0,6	*If free pro	duct is present	over 1/8 inch.	sampling will no	t be required.	=
pH = 70 pH = 100 B Reling Volume Purg Time (militan	Davis uished by ged (gallons)	5-10-21 / 0856 Date/Time Initial 1205	Standard Standard dz Pa Recei- 1st 0.2 1210	2nd 0.4 1215	447 84 5-10-21 / 0856 DistriTime 3rd 0,6 1220	*If free pro	duct is present	over 1/8 inch.	sampling will no	t be required.	- ESS
pH = 70 pH = 100 B Reling Volume Purg Time (militan pH (s.u) Specific Con-	Davis uished by ged (gallons)	5-10-21 / 0856 Date/Time Initial 	Standard Standard dz Pa Recei- 1st 0.2 1210 6.92	2rd 0.4 1215 7.70	447 84 5-10-21 / 0856 Diste/Time 3rd 0.6 1220 7.69	*If free pro	duct is present	over 1/8 inch.	sampling will no	t be required.	- ESS
pH = 70 pH = 100 B Reling Volume Purg Time (militan pH (s.u) Specific Conc	Davis uished by ged (gallons) y)	5-10-21 / 0856 Date/Time Initial + 1205 7.38 535.2	Standard Standard dz Pa Recein 1st 0.2 1210 6.92 543.0	2rd 0.4 1215 7.70 537.6	447 84 5-10-21 / 0856 Diste/Time 3rd 0.6 1220 7.69 541.5	*If free pro	duct is present	over 1/8 inch.	sampling will no	t be required.	78%

Date	05/07/21					Well #	GW-3				
Field Personnel		7)	B Davis		100		3000				
General weather	r Conditions		Clear			Well Diam	eter (D)	1	inch of	10.00	feel(ft) BC
Ambient Ar Tam	nperature (°C)		15			_ 25me0048				-	
acility Name:	563 Hazel	wood Ava	Site ID#	Not	Applicable						
		Quality Assura	noe			511100511710000	fuct Thickness Depth (TWD)		NA: 10.00	_ft ft BTOC	
							Groundwater (0	GW)	5.87	R BTOC	
H Sensor:	Oakton 3	15630-62	Conductiv	ity Sensor:	35630-32						
enal no.	324	976	serial no	edentification (CEVO)	324976						
20 C 20 W		0	Standard		15,000	E .					
	H = 7.0 7.0			7.000		10					
xH = 7.0	7	ŏ	Standard		1,413						
#H = 7.0		ŏ	Slandard Slandard Standard								
pH = 7.0 pH = 10.0	7	Chan of Gusto	Standard Standard	ace	1,413 447 84			rgad Before Sa		C.6	_gals
pH = 7.0	7. 10	0	Standard Standard dg Pa	ace ved by	1,413 447			.rgad Before Sal over 1/8 inch, s.			_gals
	7, 10 Davis	Chan of Custo 5-10-21 / 0856 Date/Time	Standard Standard dy Pa Recer	myselvi .	1,413 447 84 5-10-21 / 0056						_gals
oH = 7.0 oH = 10.0 B. t Relingu	7, 10 Davis Jished by	Chain of Custo 5-10-21 / 0856	Standard Standard dy Pa Recer 1st	ved by 2nd	1,413 447 84 5-10-21 / 0856 Date/Time						gals
oH = 7.0 oH = 10.0 B. t Relingu	7, 10 Davis uished by ed (gallons)	Chan of Custo 5-10-21 / 0856 Date/Time	Standard Standard dy Pa Recer 1st 0,2	2nd 0.4	1,413 447 84 5-10-21 / 0856 Date/Time 3rd 0.6	*11 free pro	duct is present	over 1/8 inch, s	ampling will no	t be required.	
eH = 7.0 eH = 10.0 B. t Relingu Volume Purge Time (military	7, 10 Davis uished by ed (gallons)	Chan of Custo 5-10-21 / 0856 Date/Time	Standard Standard dy Pa Recer 1st 0.2 1120	2nd 0.4 1125	1,413 447 84 5-10-21 / 0856 Date/Time 3rd 0.6 1130	*11 free pro	duct is present	over 1/8 inch, s	ampling will no	t be required.	
eH = 7.0 eH = 10.0 B. to Relingu Volume Purge Time (military pH (s.u)	Davis Ushed by ed (gallons)	Chan of Custo 5-10-21 / 0856 DaterTime Initial 1115 7.16	Standard Standard dy Pa Recer 1st 0.2 1120 6.68	2nd 0.4 1125 6.72	1,413 447 84 5-10-21/0856 Date/Time 3rd 0.6 1130 6.75	*11 free pro	duct is present	over 1/8 inch, s	ampling will no	t be required.	
et = 7.0 H = 10.0 B. t Relingu /olume Purgi Fime (military bH (s.u) Specific Cond	Davis uished by ed (gallons) f) ductivity (us)	Chan of Custo 5-10-21 / 0856 Date/Time	Standard Standard dy Pa Recer 1st 0.2 1120	2nd 0.4 1125	1,413 447 84 5-10-21 / 0856 Date/Time 3rd 0.6 1130	*11 free pro	duct is present	over 1/8 inch, s	ampling will no	t be required.	
H = 7.0 H = 10.0 B. t Relingu /olume Purge Fime (military OH (s.u) Specific Cond Water Tempe	Davis uished by ed (gallons) f) ductivity (us)	Chan of Custo 5-10-21 / 0856 Date/Time Initial 1115 7.16 501.5 15.3	Standard Standard dy Pa Recer 1st 0.2 1120 6.68	2nd 0.4 1125 6.72	1,413 447 84 5-10-21/0856 Date/Time 3rd 0.6 1130 6.75	*11 free pro	duct is present	over 1/8 inch, s	ampling will no	t be required.	
oH = 7.0	Davis uished by ed (gallons) f) ductivity (us)	Chan of Custo 5-10-21 / 0856 Date/Time Initial	Standard Standard dy Pa Recen 1st 0.2 1120 6.68 529.5	2nd 0.4 1125 6.72 524.0	1,413 447 84 5-10-21/0856 Date/Time 3rd 0.6 1130 6.75 528.7	*11 free pro	duct is present	over 1/8 inch, s	ampling will no	t be required.	

Page 1 of __

Field Personnel General weather Cor						Well #	SW-2				
Ganaral weather Co.			B. Davis								720
Charles in property on the party	onditions		Clear			Well Diami	eter (D)		not of	11.00	feet(ft) BGS
Ambient Air Temper	rature (°C)		15								
Facility Name	563 Hazelwo	ood Ave	Site ID N	Not A	Applicable						
Caroni XIII III III III		A4400 COT 287 SAN	e e				luct Thickness Depth (TWD)		NA 11 00	fi BTOC	
		Quality Assura	nce				rounowater (D	venavi.	6 40	n BTOC	
pH Sensor:	Oakton 35	630-62	Conductiv	ity Sensor:	35630-32	Depth to G	ruuriuwater (L	(GW)	0.40		
serial no	32497	The second second	serial no.		24978						
pH = 4.0	4.0	V	Standard	- 1	5,000						
pH = 7.0	7.0	0	Standard		1,413						
pH = 10.0	10.0)	Standard		447						
			Standard		2000						
		Chain of Custo	25080725		84	Total Volui	me of Water P	umed Before S	ampling	06	gals
ß Dav	vis	Chain of Custo 5-10-21 / 0856	n <u>dy</u> Ps	908	5-10-21 / 0856			runged Before S t over 1/8 inch.			_gals
B Dav Reinquish	AND DESCRIPTION OF THE PARTY OF	Control of the Contro	n <u>dy</u> Ps	soe ved by							gals
100	AND DESCRIPTION OF THE PARTY OF	5-10-21 / 0858	n <u>dy</u> Ps	CARCON	5-10-21 / 0856						gals Post
Reinquish	ned by	5-10-21 / 0856 Date/Time	Pa Pa Recei	ved by	5-10-21 / 0858 Data/Time	*If free pro	duct is presen	t over 1/8 inch.	sampling will n	ot be required.	
Reinquish Volume Purged	ned by	5-10-21 / 0856 Date/Time Initial	Ps Recei	ved by 2nd	5-10-21 / 0858 Date/Time 3rd	*If free pro	duct is presen	t over 1/8 inch.	sampling will n	ot be required.	
Relnquish	ned by	5-10-21 / 0856 Date/Time	Ps Recei	2nd 0.4	5-10-21 / 0858 Data/Time 3rd 0.6	*If free pro	duct is presen	t over 1/8 inch.	sampling will n	ot be required.	
Volume Purged Time (military)	(gallons)	5-10-21 / 0858 Date/Time Initial 945	Ps Recei 1st 0.2 950	2nd 0.4 0955	5-10-21 / 0858 Data/Time 3rd 0.6 1000	*If free pro	duct is presen	t over 1/8 inch.	sampling will n	ot be required.	
Volume Purged Time (military) pH (s.u)	(gallons)	5-10-21 / 0858 Date/Time Initial 	Ps Received 1st 0.2 950 6.47	2nd 0.4 0955 6.65	5-10-21 / 0858 Data/Time 3rd 0.6 1000 6.70	*If free pro	duct is presen	t over 1/8 inch.	sampling will n	ot be required.	
Volume Purged Time (military) pH (s.u) Specific Conduc	(gallons)	5-10-21 / 0858 Date/Time Initial 945 6.84 583.7	Ps Received 1st 0.2 950 6.47 588.1	2nd 0.4 0955 6.65 584.5	5-10-21 / 0858 Data/Time 3rd 0.6 1000 6.70 580.1	*If free pro	duct is presen	t over 1/8 inch.	sampling will n	ot be required.	

Date Field Personnel	05/07/21	100	B. Davis			Well #	GW-1	9).			
General weather			Clear		.	Well Diam	ator (D)	534	inch of	10.00	feel(ft) BGS
Ambient Air Ten			15			Aver Diale	didi (tv)		incredi	10.06	1661(II) BGS
					.						
Facility Name:	563 Hazel	wood Ave.	Site ID#	Not	Applicable						
						*Free Proc	tudt Thickness		NA	ft	
		Quarity Assura	nce			Total Well	Depth (TWD)		10.00	R BTOC	
						Depth to G	Groundwater (D	iGW)	8.32	n atoc	
pH Sensor:		35630-62		ity Sensor:	35630-32						
serial no		976	senal no		324976						
pH ≃4.0		.0	Standard		15,000						
pH = 7.0		.0	Standard		1,413						
		00	Standard Standard		1,413 447 84						
pH = 10.0		Chan of Custo	Standard Standard		447 84	34,000,400,500,00		urged Before S	Chillian Til ne same	0.6	_gals
pH = 10.0	10 Davis	Chan of Custo 5-10-21 / 0856	Standard Standard Ody Pa	ce	5-10-21 / 0856	34,000,400,500,00		lurged Before S It over 1/6 inch,	Chillian Til ne same	-	_gals
pH = 10.0		Chan of Custo	Standard Standard Ody Pa		447 84	34,000,400,500,500			Chillian Til ne same	-	_gals
pH = 10.0	10 Davis	Chan of Custo 5-10-21 / 0856 Date/Time	Standard Standard 22v Pa Rece	ice yed by	447 84 5-10-21 / 0856 Date/Time	*If frae pro	iduct is presen	t over 1/B inch,	samping will no	nt be required	Tra
pH = 10.0 B Refina	.10 Davis Lished by	Chan of Custo 5-10-21 / 0856	Standard Standard Dgy Pa Recer 1st	ice red by 2nd	447 84 5-10-21 / 0856 Date/Time	34,000,400,500,500			Chillian Til ne same	-	gals
pH = 10.0 B Reing Volume Purg	Cavis uished by jed (gallons)	Chan of Custo 5-10-21 / 0856 Date/Time	Standard Standard 202y Pa Recentant 1st 0.2	ice yed by 2nd 0.4	5-10-21 / 0856 Date/Time 3rd 0.6	*If frae pro	iduct is presen	t over 1/B inch,	samping will no	nt be required	Tra
pH = 10.0 B Reina Volume Purg Time (militan	Cavis uished by jed (gallons)	Chan of Custo 5-10-21 / 0856 Date/Time	Standard Standard 2024 Pa Recentant 1st 0.2 1245	2nd 0.4 1250	5-10-21/0856 Date/Time 3rd 0.6 1300	*If frae pro	iduct is presen	t over 1/B inch,	samping will no	nt be required	Tra
pH = 10.0 B Reina Volume Purg Time (military pH (s.u)	Davis uished by ged (gallons)	Chan of Custo 5-10-21 / 0856 Date/Time Initial 1240 6.68	Standard Standard Pa Recentant 0.2 1245 7.20	2nd 0.4 1250 7.47	5-10-21/0856 Date/Time 3rd 0.6 1300 7.45	*If frae pro	iduct is presen	t over 1/B inch,	samping will no	nt be required	Tra
pH = 10.0 B Reina Volume Purg Time (military pH (s.u) Specific Cone	Davis uished by ged (gallons) y) ductivity (us)	Chan of Custo 5-10-21 / 0866 Date/Time Initial 	Standard Standard 92y Pa Rece- 1st 0.2 1245 7.20 289.6	2nd 0.4 1250 7.47 284.4	5-10-21/0856 Oate/Time 3rd 0.6 1300 7.45 290.7	*If frae pro	iduct is presen	t over 1/B inch,	samping will no	nt be required	Tra
pH = 10.0 B Reina Volume Purg Time (military pH (s.u) Specific Cone Water Tempe	Davis uished by ged (gallons) y) ductivity (us)	Chan of Custo 5-10-21 / 0866 Date/Time Initial 	Standard Standard Standard Pa Recent 1st 0.2 1245 7.20 289.6 15.1	2nd 0.4 1250 7.47 284.4 15.0	5-10-21/0856 Date/Time 3rd 0.6 1300 7.45	*If frae pro	iduct is presen	t over 1/B inch,	samping will no	nt be required	Tra
pH = 10.0	Davis uished by ged (gallons) y) ductivity (us)	Chan of Custo 5-10-21 / 0866 Date/Time Initial 	Standard Standard 92y Pa Rece- 1st 0.2 1245 7.20 289.6	2nd 0.4 1250 7.47 284.4	3rd 0.6 1300 7.45 290.7 15.0	*If frae pro	iduct is presen	t over 1/B inch,	samping will no	nt be required	7/8 -

Appendix B

Field Data Information Sheets for Groundwater Sampling

KEY TO SOIL CLASSIFICATIONS AND CONSISTENCY DESCRIPTIONS

BUNNELL-LAMMONS ENGINEERING, INC. GREENVILLE, SOUTH CAROLINA

Penetration Resistance* Blows per Foot

Relative Density

Particle Size Identification

SANDS

0.653 Very Loose 5 to 10 Loose 11 to 20 Firm 21 to 30 Very Firm 31 to 50 Danse Very Danse aver 60

Boulder: Greeter than 300 mm Cobb at 75 to 300 mm Gravel: Coarse - 19 to 75 mm Fine - 4.75 to 19 mm

Sand: Coarse - 2 to 4,75 mm Medium - 0,425 to 2 mm Fine - 0.075 to 0.426 mm Silt & Clay: Less than 0.075 mm

Penetration Resistance* Blows per Foot

Consistency

SILTS and CLAYS

Very Soft Soft Firm 0 to 2 3 to 4 5108 9 to 16 Stiff 18 to 30 Very Stiff 31 to 60 Hard over 60 Very Herd

*ASTMID 1586

KEY TO DRILLING SYMBOLS

Grob Sample

Split Socon Sample

NR = No reaction to HQL

NA = Not applicable

NS = No sample

Groundwater Table at Time of Drilling

Groundwater Table 24 Hours after Completion of Drilling

Und sturbed Sample

KEY TO SOIL CLASSIFICATIONS

Well-graded Gravel GW

Low Plasticity Clay CL

Clayey Silt

Silty Sand SM

Poorly-graded Gravel

Sandy Clay СLS

Sendy Silt MLS.

Topsoil TOPSOIL

Partially Weathered Rock BLDRÓBBL

Silty Clay CL-ML

Sand SV/

Liquid Sludge SLUDGE

High ⊡asticity Clay

Silt ML

Clayey Sand

FIII FILL

Poorly Graded Sand

Bedrock BEDROCK

Weste WOOR

Geotechnical And Environmental

	GEOPROBE BORING NO.	B-5/GW-5
JECT:	Proposed Waynesville Fire Station	PROJECT NO.: J21-14542-03

PROJECT: Proposed Waynesville Fire Station

CLIENT: Town of Waynesville

LOCATION: Waynesville, North Carolina DRILLER: JG <u>Prilling</u>, J. Grant

ELEVATION: LOGGED BY: B. Davis

START: 6-7-21 END: 5-7-21

DRILLING METHOD: Track mount Geoprobe

COMBULTANTE AFTER 24 HOURS: 🔻 DEPTH TO - WATER> INITIAL: ablaCAVING> MONITOR WELL INSTALLATION DETAILS ELEVATION/ DEPTH (FT) DESCRIPTION TOPSOIL 0.0 Light brown SILT 0.1 0.3 0.3 0,4 0.2 wet 1-inch diameter, 0.010-inch stotted Schedule 40 PVC well screen, 3.8 to 8.8 feet. 0.2-foot end cap 10 Boring terminated at 10.0 feet. Groundwater encountered at 4.51 feet at time of drilling. Soil sample B-5(2) collected from 2-feet below ground surface. Groundwater sample GW-5 collected from 3.8-8.8-feet below ground surface. -15

GEOPROBE BORING NO. B-5/GW-5

Sheet 1 of 1

GEOTECHICALAND ENVIRONMENTAL

CONSULTANTS

GEOPROBE BORING NO. B-4/GW-4

PROJECT: Proposed Waynesville Fire Station PROJECT NO.: J21-14542-03

CLIENT: Town of Waynesville START: 5-7-21 END: 5-7-21 LOCATION: Waynesville, North Carolina ELEVATION:

DRILLER: JG Drilling, J. Grant LOGGED BY: B. Davis

DRILLING METHOD: Track mount Geoprobe

DEPTH TO - WATER> INITIAL:

5.71 AFTER 24 HOURS:

CAVING>

CAVING>

	DEPTH TO - WATER> INITIAL: ✓	AFTE	R 24 HOURS:	¥_	CAVING>
EVATION/ PTH (FT)	DESCRIPTION	SAMPLES	PID (ppm) READING	<u> </u>	MONITOR WELL INSTALLATION DETAILS
i	TOPSOIL	24 34 V 232 V	0.0		
-	Light brown SILT		.		
			0.1		
			0.0		
+					
	TAR material between 4 and 6 feet	<u>ШШ</u> Д	0.0		
	MX material between 4 and 6 feet	Χ	0.3		
-5	7	Ÿ	0.4		
- 1	Light brown SILT		""		
			9.4		1-inch diemeter, 0.010-inch slotted Schedule 40 PVC well
			0.3		screen, 4.3 to 8.3 feet. 0.2-foot end cap
	TAR material between 8 and 9 feet				
Ī	Light brown, moist SILT	<u>A</u>	0.1		
	Light brown, moist all	:::::::::X	0.1	\exists	
-10	Boring terminated at 10.0 feet.		'	L	I
İ	Groundwater encountered at 5.71 feet at time of drilling.				
	Soil sample B-4(5) collected from 5-feet below ground surface.				
	Groundwater sample GW-4 collected from 4.3-9.3-feet below ground surface.				
-15					
[i					
	·				

GEOPROBE BORING NO. B-4/GW-4 Sheet 1 of 1

QUOTECHICALÂNDERVIRONIENTAL

GEOPROBE BORING NO. B-3/GW-3

PROJECT: Proposed Waynesville Fire Station PROJECT NO.: <u>J21-14642-03</u> START: <u>5-7-21</u> END: <u>6-7-21</u> CLIENT: Town of Waynesville ELEVATION: ____ LOCATION: Waynesville, North Carolina

LOGGED BY: B. Davis DRILLER: JG Drilling, J. Grant

DRILLING METHOD: Track mount Geoprobe

	CONSULTANTS	DRILLING METHOD: Track mount G					
		DEPTH TO - WATER> INITIAL: ☑	5.87		R 24 HOUR	s: ¥	CAVING>
ELEVATION DEPTH (FT)		DESCRIPTION	i	A SAWPLES	PID (ppm) READING	Γ	MONITOR WELL INSTALLATION DETAILS
i	TOPSOIL	And being		75.75 7.75 7.75 7.75 7.75 7.75 7.75 7.7	0.0		
	Boring terminate Groundwater en time of drilling. Soil sample B-3(below ground so	ed at 10.0 feet. countered at 5.87 feet at (2) collected from 2-feet			:		1-inch diameter, 0.010-inch slotted Schedule 40 PVC well screen, 4.8 to 9.8 feet 0.2-foot end cap
-15			; !				
-							
-							
-	!						
					GE	OPRO	BE BORING NO. B-3/GW Sheet 1 of

GEOTECHECAL AND ENVIRONMENTAL CONSULTANTS

GEOPROBE BORING NO. B-2/GW-2

PROJECT: Proposod Waynesville Fire Station

CLIENT: Town of Waynesville

LOCATION: Waynesville, North Carolina

DRILLER: JG Drilling, J. Grant

DRILLING METHOD: Track mount Geoprobe

DEPTH TO - WATER> INITIAL: ▼ 8.40 APTER 24 HOURS: ▼

APTER 24 HOURS: ▼ ____ CAVING>

PROJECT NO.: J21-14542-03

START: 5-7-21 END: 6-7-21

LOGGED BY: _B, Davis

Sheet 1 of 1;

ELEVATION: _______

	DEPTH TO - WATER> INITIAL: ♀	<u>8.40</u> AFTE	R 24 HOURS	<u>: ▼ _</u>	CAVING> 🚃
ELEVATION/ DEPTH (FT)	DESCRIPTION	SOIL TYPE SAMPLES	PD (ppm) READING	П	MONITOR WELL INSTALLATIO DETAILS
-	TOPSOIL Light brown SILT		0.2		
-) N	0.4		
-6			0.1		
Ž	7.		0,8 0.3		
<u>-</u> -			0.3		1-inch diameter, 0.010-inch slotted Scheduje 40 PVC well screen, 5.8 to 10.8 fact, 0.2-for end cap
-10 - -			0.1		
-	Boring terminated at 13.0 feet.	 			
-15	Groundwater encountered at 6.40 feet at time of drilling. Soll sample B-2(3.5) collected from 3.5-feet				
- - - i	below ground surface. Groundwater sample GW-2 collected from 4.8-9.8-feet below ground surface.				

Geotechescal And Environmental Consultants

GEOPROBE BORING NO. B-1/GW-1

PROJECT NO.: <u>J21-14542-03</u> START: <u>5-7-21</u> END: <u>5-7-21</u>

ELEVATION: __... _

LOGGED BY: B. Davis

Sheet 1 of 1

PROJECT: Proposed Waynesville Fire Station

CLIENT: Town of Waynesville

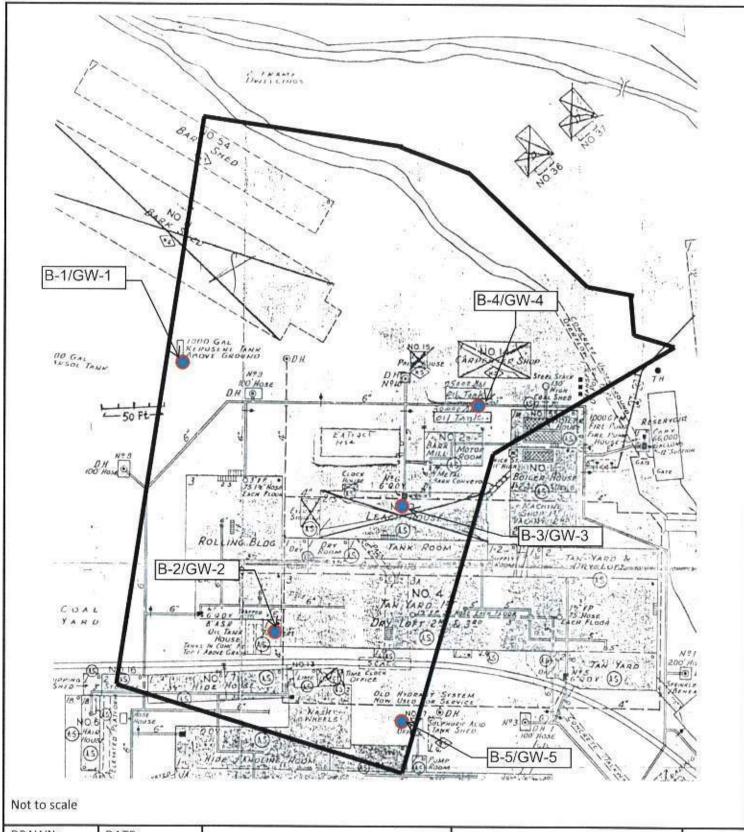
LOCATION: Waynesville, North Carolina

DRILLER: JG Drilling, J. Grant

DRILLING METHOD: Track mount Geoprobe

DEPTH TO - WATER> INITIAL:

B.32 AFTER 24 HOURS:


CAVING>

CAVING

DEPTH TO - WATER> INITIAL: \$ 8.32 AFTER 24 HOURS CAVINGS SERVICE STATES TO HOURS CAVINGS SERVICE STATES TO HOURS SERVICE SERVICE STATES TO HOURS SERVICE SERVICE STATES TO HOURS SERVICE SERVI
Light brown SILT 0.1 0.1 0.1 1-inch diameter 0.010-inch slotted Schedule 40 PVC well sureen, 4.0 to 9.8 feet, 0.2-foot end cup 10 Boring terminated at 10.0 feet. Groundwater encountered at 8.32 feet at time of drilling. Soil sample B-1(2) collected from 2-feet below ground surface. Groundwater sample GW-1 collected from
-15

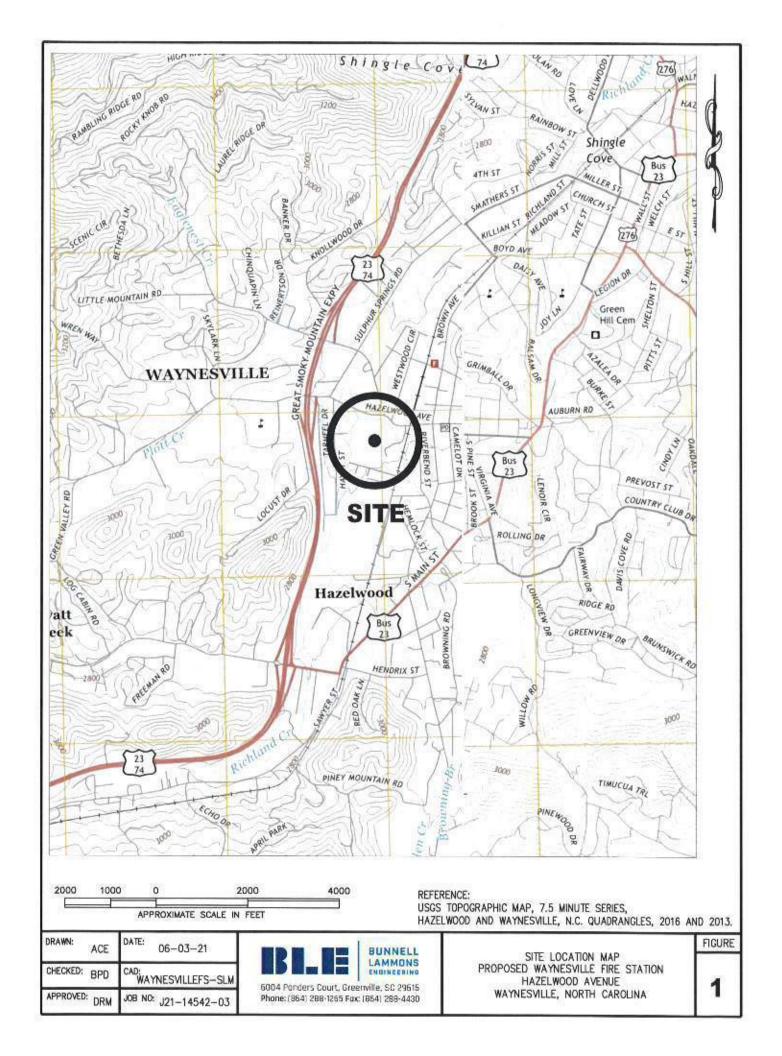
Appendix A Soil Boring Logs

APPENDICES

DRAWN: DATE:
BD 6-5-12

CHECKED: JOB No:
DRM J21-14542-03

APPROVED:
DRM


BUNNELL LAMMONS ENGINEERING

6004 Ponders Court, Greenville, SC 29615 Phone: (864) 288-1265 Boring Location Plan & Historical Features

563 Hazelwood Ave Waynesville, North Carolina **FIGURE**

3

Figures

TABLE 6 CON'T

Groundwater Analytical Results Dissolved Metals - EPA Methods 6020B, 7471B, & 7199 Approximate 3.5-Acre Site

563 Hazelwood Avenue Waynesville, North Carolina BLE Job Number: J21-14542-03

Chemical of Concern NCDEO 2L Standard		Dissolved Magnesium NE	Dissolved Manganese 50	Dissolved Nickel	Dissolved Potassium	Dissolved Sodium	Dissolved Vanadium
Sample ID	Date Sampled	BASIND NO.	20	100	NE	NE THE PERSON NAMED IN	NE
GW-1	05/07/21	6,000	150	2.0 J	5,900	3.400	<2.5
GW-2	05/07/21	24,000	1,100	1.8 J	4,400	5,700	<2.5
GW-3	05/07/21	14,000	160	13	7,900	4,200	6,9
GW-4	05/07/21	9,100	940	1.3 J	7,500	8,900	0:2.5
GW-5	05/07/21	15,000	430	1.6.1	8,900	7,400	<2.5

NOTES:
NCDEQ 21. Standard - North Carolina Department of Environmental Quality, Groundwater Quality Standard 15A NCAC 02L 0202, March 2018
Detections are in ug/l - micrograms per liter
Yellow shaded cells indicate detections above NCDEQ 2L Standard

Bold data indicate detections

XF - RSL or SSL Not Established

I - results that are greater than the method detection from and less than the reporting front.

Groundwater Analytical Results Dissolved Metals - EPA Methods 6020B, 7471B, & 7199 Approximate 3.5-Acre Site 563 Hazelwood Avenue Waynesville, North Carolina BLE Job Number: J21-14542-03

Chemical	of Concern	Dissolved Aluminum	Dissolved Antimony	Dissolved Barium	Dissolved Calcium	Dissolved Cobalt	Dissolved Copper	Dissolved Iron
NCDEQ 2	L Standard	NE	NE	700	NE	NE	1,000	300
Sample ID	Date Sampled	THE STATE OF						
GW-1	05/07/21	<10	< 0.50	73	50,000	<1.3	<1.3	13 J
GW-2	05/07/21	170	1.1 J	49	87,000	3.3 J	<1.3	1,600
GW-3	05/07/21	51	0.80 J	120	120,000	<1.3	1.6 J	110
GW-4	05/07/21	13 J	2.1	210	120,000	×1.3	<1.3	29 J
GW-5	05/07/24	81	0.56 J	26	80,000	<1.3	<1.3	2,300

NOTES
NOTES
NODEQ 2L Standard - North Carolina Department of Environmental Quality, Groundwater Quality Standard 15A NCAC 02L 0202, March 2018
Detections are in pigel - micrograms per later
Yellow shaded cells indicate detections above NCDEQ 2L Standard

Bold data indicate detections

NF - RS1, or SSL Not Established

1 - results that are greater than the method detection limit and less than the reporting limit

Groundwater Analytical Results
Semi-Volatile Organic Compounds (VOCs) - EPA Method 8270F
Approximate 3.5-Acre Site
563 Hazelwood Avenue
Waynesville, North Carolina
BLE Job Number: J21-14542-03

Chemical of Concern		2-Methylnaphthalene	Acenaphthene	bis(2-Ethylhexyl) phthalate	Di-n-butyl phthalate	Diethylphthalate	Naphthalene
NCDEQ 2L Standard		30	80	3	700	6,000	6
Sample ID	Date Sampled	BHA COLUMN				THE PARTY OF THE PARTY OF	Sed Cal
GW-1	05/07/21	<0.040	< 0.040	0.72 J	< 0.42	0.35 J	<0.040
GW-2	05/07/21	< 0.040	< 0.040	1.4 J	< 0.42	0.41 J	<0.040
GW-1	05/07/21	<0,046	<0.040	0.70 J	< 0.42	<0.19	<0.040
GW-4	05/07/21	0.043 J	<0.040	0.63 J	< 0.42	<0.19	0.051 J
GW-5	05/07/21	< 0.040	0.045 J	0.64 J	1.0 J	0,43 J	<0.040

Groundwater Analytical Results
Volatile Organic Compounds (VOCs) - EPA Method 8260D
Approximate 3.5-Acre Site
563 Hazelwood Avenue
Waynesville, North Carolina
BLE Job Number: J21-14542-03

Chemical	Carbon Disulfide	
NCDEQ 2	700	
Sample ID:	Date Sampled	TARREST IN STREET
GW-1	05/07/21	<0.40
GW-2	05/07/21	0.42 J
GW-3	05/07/21:	<0.40
GW-4	05/07/21	< 0.40
GW-5	05/07/21	< 0.40

NOTES:

NOTES

NC PEQ 21. Standard - North Carolina Department of Environmental Quality.
Groundwater Quality Standard 15A NCAC 021.0202, Much 2018

Hetections are in agr1-micrograms per liter

Yellow shaded cells indicate detections above

NCDEQ 21. Standard

Bold data indicate detections

NE - RSL or SSL Not Established

J - results that are greater than the method detection front and less than the reporting family.

TABLE 3 CON'T

Soil Analytical Results Metals - EPA Methods 6020B, 7471B, & 7199 Approximate 3.5-Acre Site 563 Hazelwood Avenue Waynesville, North Carolina BLE Job Number: J21-14542-03

Chemical	of Concern	Potassium	Selenium	Silver	Sodium	Thallium	Vanadium	Zinc	Mercury
Industrial	RSL (µg/kg)	NE	1,200,000	1,200,000	NE	2,300	1,200,000	70,000,000	9,700
Sample ID	Date Sampled	Battle Battle		No Explore		CONTRACTOR OF THE PARTY OF THE		THE REAL PROPERTY.	THE REAL PROPERTY.
B-1(2)	05/07/21	2,700,000	510 J	<59	<36000	240	63,000	54,000	28 J
B-2 (3.5)	05/07/21	2,300,000	790 J	<67	76,000 J	370	64,000	94,000	22 J
B-3 (2)	0.5/07/21	4,600,000	1200 J	90.1	46,000 J	510	53,000	110,000	53 J
B-4 (5)	05/07/21	980,000	1,500	<65	140,000	160	22,000	70,000	89 J
B-5-(2)	05/07/21	4,600,000	670 J	<63	<38000	440	41,000	50,000	-:22

NOTES
PSRG - North Carolina Department of Environmental Quality, Preliminary Soil Remediation Goals (PSRG), January 2021
Detections are in pg/Ag - micrograms per kilogram

Blue shaded cells indicate detections above Industrial/Commercial PSRG
Bold data indicate detections
NE - RSL or SSL Not Established

J - results that are greater than the method detection limit and less than the reporting limit

TABLE 3 CON'T

Soil Analytical Results Metals - EPA Methods 6020B, 7471B, & 7199 Approximate 3.5-Acre Site 563 Hazelwood Avenue Waynesville, North Carolina BLE Job Number: J21-14542-03

Chemical of Concern Industrial RSL (µg/kg)		Cobalt	Copper	Iron	Lead	Magnesium	Manganese	Nickel
		70,000	9,300,000	160,000,000	NE	NE	32,000,000	4,700,000
Sample ID	Date Sampled	article of	Charles and the	The second second				
B-1 (2)	05/07/21	11,000	26,000	41,000,000	22,000	2,100,000	390,000	14,000
B-2 (3.5)	05/07/21	13,000	27,000	47,000,000	10,000	5,200,000	320,000	21,000
B-3 (2)	05/07/21	18,000	29,000	47,800,000	13,000	4,300,000	1,000,000	26,000
B-4 (5)	05/07/21	4,900	410,000	15,000,000	55,000	1,000,000	380,000	13,000
B-5 (2)	05/07/21	8,400	11,000	29,000,000	12,000	2,800,000	170,000	12,000

NOTES
PSRG - North Carolina Department of Environmental Quality, Preliminary Soil Remediation Goals (PSRG), Jamery 2021
Detections are in µg/kg - micrograms per kilogram
Blue shaded cells indicate detections above Industrial/Commercial PSRG

Blue shade Bald data indicate detections NE - RSL or SSL Not Established

I - results that are greater than the method detection limit and tess than the reporting limit

Soil Analytical Results Metals - EPA Methods 6020B, 7471B, & 7199 Approximate 3.5-Acre Site 563 Hazelwood Avenue Waynesville, North Carolina BLE Job Number: J21-14542-03

Chemical of Concern Industrial RSL (µg/kg)		Aluminum	Antimony	Arsenic	Barium	Beryllium	Cadmium	Calcium	Chromium
		230,000,000	93,000	3,000	47,000,000	470,000	200,000	NE	NE
Sample ID	Date Sampled	(NEED) (NO.			- payroth the	STATE OF THE	THE REAL PROPERTY.	AUDITOR DE	100 MINES
B-1(2)	05/07/21	43,000,000	<200	1,500	160,000	370	78 J	820,000	37,000
B-2 (3.5)	05/07/21	40,000,000	<220	1,600	180,000	230	<28	2,000,000	41,000
B-3 (2)	05/07/21	34,000,000	<210	2,800	150,000	180	58 J	230,000	30,000
B-4 (5)	05/07/21	7,600,000	1,600	7,500	490,000	320	180	18,000,000	10,000
B-5(2)	05/07/21	31,000,000	<210	1,800	120,000	410	<26	180,000	19,000

NOTES
PSRG - North Carolina Department of Environmental Quality, Preliminary Soil Remediation Guals (PSRG), January 2021
Detections are in µg/kg - micrograms per kilingmin
Blue shaded cells indicate detections above Industrial/Commercial PSRG

Blue shaded cells indicate detections above Industrial/Commercial Bold data indicate detections
NE - RSL or SSL Not Established
J - results that are greater than the method detection limit and less than the reporting limit.

TABLE 2 CON'T

Soil Analytical Results
Soui-Volatile Organic Compounds (SVOC's) - EPA Method 8270D
Approximate 3.5-Acre Site
563 Hazelwood Avenue
Waynesville, North Carolina
BLE Job Number: J21-14542-03

Chemical of Concern		Di-n-butyl phthalate	Dibenzofuran	Fluoranthene	Indeno(1,2,3- c,d)pyrene	Naphthalene	Phenanthrene	Pyrene
Industrial	RSL (µg/kg)	16,000,000	210,000	6,000,000	21,000	18,000	NE	4,500,000
Sample ID	Date Sampled	A SPERSON I	10000				Swide 100	
B-1 (2)	05/07/21	\$110	<110	330	60.1	75	190	210
B-2 (3.5)	05/07/21	<58	<58	<4.9	<12	<11	< 8.4	<5.8
B-3 (2)	05/07/21	6.2 J	<3.6	<0.47	31.17	2.0 J	< 0.80	<0.56
B-4 (5)	05/07/21	×120	310	350	63	980	920	310
B-5 (2)	05/07/21	×5.9	<5.9	<0.49	<1.2	<1.1	<0.84	< 0.59

NOTES

PSRG - North Carolina Department of Environmental Quality, Prelimenary Soil Remediation Goals (PSRG), January 2021

Detections are in up/kg - micrograms per kilogram

Blue shaded cells indicate detections above Industrial/Commercial PSRG

Hold data indicate detections

NE - RSL or SSL Not Established

J - results that are greater than the method detection limit and less than the reporting limit.

Soil Analytical Results
Semi-Vulatile Organic Compounds (SVOC's) - EPA Method 8270D
Approximate 3.5-Acre Site
563 Hazelwnod Avenue Waynesville, North Carolina BLE Job Number: J21-14542-03

Chemical	of Concern	2- Methylnaphthalene	Anthracene	Benzo(a) anthracene	Benzo(a) py rene	Benzo(h) fluoranthene	Benzo(g,h,i) perylene	Benzo(k) Duoranthene	Chrysene
Industrial	RSL (µg/kg)	600;000	45,000,000	21,000	2,100	21,000	NE	210,000	2,100,000
Sample ID	Date Sampled				A STATE OF THE STA		Arrest Control of	STATE OF THE STATE OF	III DESCRIPTION OF
B-1 (2)	05/07/21	100	50 J	180	160	180	73	81	140
B-2 (3.5)	05/07/21	<42	<5.9	46.9	<7.7	<5.8	<7.6	<5.6	<5.2
B-3.(2)	05/07/21	2.3 J	o0.57	< 0.66	< 0.74	<0.56	90.73	<0.54	< 0.50
B-4 (5)	05/07/21	1,600	89	190	190	280	110	86	260
B-5 (2)	05/07/21	412	<0.60	<0.69	< 0.77	<0.59	<0.76	<0.56	< 0.53

NOTES

PSRG - North Carolina Department of Environmental Quality, Preliminary Soil Remodestron Gods (PSRG), January 2021.

Detections are in packg - micrograms per kilogram.

Blue shaded cells indicate detections above Industrial/Commercial PSRG

Bold data indicate detections.

NE - RSL or SSL Not Established.

TABLE I

Soil Analytical Results Volatile Organic Compounds (VOCs) - EPA Method 8260D Approximate 3.5-Acre Sile 563 Hazelwood Avenue Waynesville, North Carolina BLE Job Number: J21-14542-03

Chemical of Concern		2-Butanone (MEK)	Acetone	Carbon disulfide	Cyclo- hexane	Methyl- cyclohexane	Toluene	Xylenes (total)
Industrial/Comme	reial PSRG (ng/kg)	48,000,000	146,000,600	740,000	5,800,000	NE	9,700,000	530,000
Sample 1D	Date Sampled				WE AND SEE	E SOUTH		
B-1 (2)	05/07/21	<4.1	≤8.2	<2.0	<2.0	< 2.0	< 2.0	<4.1
B-2 (3.5)	05/07/21	12 J	89	5.6.1	< 2.5	<2.5	42.5	<4.9
B-3-(2)	05/07/21	<4.1	<81	<2.0	<2.0	<2.0	<2.0	54.1
B-4 (5)	05/07/21	<6.8	<14	9.1	5.9.1	14	9.7	143
B-5 (2)	05/07/21	<3.9	<7.8	<1.9	<[9.	<1.9	<19.	<3.9

NOTES

PSRG North Carolina Department of Environmental Quality, Preliminary Soil Remediation Goals (PSRG), January 2021
Detections are in paying - micrograms per kilogram

Blue shaded cells indicate detections above todustrial. Commercial PSRG
Bold than indicate detections

NE - RSL or SSL Not Established

I - results that are greater than the method detection limit and less than the reporting limit

Limited Phase II ESA – Approximate 3.5-Acre Site Waynesville, Haywood County, North Carolina

5.0 QUALIFICATION OF REPORT

This report is for the use and benefit of, and may be relied upon by the Town of Waynesville or any of their affiliates pursuant to previously agreed upon terms and conditions. Reliance on this document by any party other than the Town of Waynesville may occur only upon the express written consent of the Town of Waynesville and upon the relying third party's execution of a written Secondary Client Agreement between the relying third party and BLE. The services provided have been performed for the Town of Waynesville and this report may or may not be suitable for any and/or all of the purposes of the relying third party. Use of this report for purposes beyond those reasonably intended by the Town of Waynesville and BLE will be at the sole risk of the user. Any third party agrees by accepting this report that any use or reliance on this report shall be limited by the exceptions and limitations placed on the scope, nature and type of BLE's services as stated in BLE's proposal and/or this report, and with the acknowledgment that actual site conditions may change with time, and that hidden conditions may exist at the site that were not discoverable within the authorized scope of the assessment. BLE makes no other representation to any third party except that it has used the degree of care and skill ordinarily exercised by environmental consultants in the preparation of the report and in the assembling of data and information related thereto. No other warranties are made to any third party, either expressed or implied.

The activities and evaluative approaches used in this assessment are consistent with those normally employed in projects of this type. Our evaluation of site conditions has been based on our understanding of the site and project information, and the data obtained in our exploration.

Regardless of the thoroughness of an environmental site assessment, there is always the possibility that conditions between borings will be different from that at the specific boring location due to the variability of subsurface conditions. Therefore, it was not possible to identify all conceivable forms of contamination at this site. The primary objective was to perform sufficient work to assess specific areas of concern. It was not the purpose of this evaluation to fully define the degree or extent of all forms of contamination.

Limited Phase II ESA – Approximate 3.5-Acre Site Waynesville, Haywood County, North Carolina

4.0 CONCLUSIONS

BLE has performed a Limited Phase II ESA on-Site to determine if a REC identified during a Phase I ESA has potentially impacted the environmental quality of the Site. During the Phase II ESA, five soil samples and five groundwater samples were collected for laboratory analysis.

The following provides BLE's conclusions from the limited soil and groundwater sampling:

- Soil samples did not have detections of VOCs or SVOCs above their respective NCDEQ Industrial/Commercial PSRGs.
- One soil boring, B-4, had a detection of arsenic above the NCDEQ Industrial/Commercial PSRG.
 Remaining metal concentrations were below NCDEQ Industrial/Commercial PSRGs.
- Groundwater samples did not have detections of VOCs or SVOCs above their respective NCDEQ
 Standards.
- Groundwater samples had detections of iron and manganese above their respective 2L Standards; however, the concentrations were below the NCDEQ Gross Contamination Level.

BLE understands the Site is planned for future commercial redevelopment into a fire station. Therefore, BLE offers the following recommendations:

- Soil impacts from arsenic were detected above the NCDEQ Industrial/Commercial PSRG at one
 boring location from a depth of 5-feet below ground surface. If future redevelopment activities in
 this area are to disturb sub-surface soils, the disturbed soils should be either be left on-Site and
 overlain by a parking lot, building pad, or other engineered barrier. If soils from this area are to be
 transported off-Site, the disturbed soils would need additional environmental characterization to
 determine the transport and disposal requirements, if any.
- BLE understands groundwater use, either through drinking water wells or irrigation wells, is not
 planned for the Site, and public water is available at the Site and surrounding area. Given the
 proposed commercial use of the Site and the availability of public water, it is BLE's opinion the
 dissolved metal impacts identified on-Site do not warrant additional assessment at this time.
- Should an area of stained or otherwise potentially impacted media (soils and/or groundwater) be
 discovered during construction activities, work in that area should be stopped, and BLE should be
 notified in an effort to characterize a potential new waste stream. Analytical samples of the
 identified media maybe collected to determine if the media represents a new waste stream. The
 type and frequency of analytical sampling will be determined based on the volume present. Should
 the media represent a new waste stream, BLE can prepare a plan to manage the media, as necessary.
- Based on the findings of this limited assessment and the details of the October 1998 NCDEQ letter specifically not requiring additional assessment, BLE does not recommend additional assessment on-Site at this time.

Limited Phase II ESA Approximate 3.5-Acre Site Waynesville, Haywood County, North Carolina

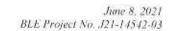
3.0 ANALYTICAL RESULTS

Five soil samples and five groundwater samples were collected and analyzed during this Limited Phase II ESA. A copy of the compete laboratory analytical report is included in **Appendix C**.

3.1 Soil Sample Analytical Results

Soil analytical results were compared to the NCDEQ Preliminary Soil Remediation Goals (PSRG), Industrial/Commercial Health Based PSRG, January 2021. The Residential PSRG was not utilized for comparison as BLE understands the Site is planned for redevelopment into a fire station and a permanent residence will not be located on-Site. The Protection of Groundwater PSRG was not utilized for comparison as the Site is located in a developed urban area of Waynesville, North Carolina. Public water is readily available in the area and BLE understands groundwater is not planned for either drinking or irrigation use on the Site.

Seven VOCs and sixteen SVOCs were detected above the laboratory minimum detection limit; however, the concentrations were below applicable Industrial/Commercial PSRGs.


Twenty-three metals were detected above the laboratory minimum detection limit. One metal, arsenic, was detected above the Industrial/Commercial PSRG at boring location B-4 from a depth of 5-feet below ground surface.

3.2 Groundwater Sample Analytical Results

Groundwater analytical results were compared to the NCDEQ Groundwater Quality Standard 15A NCAC 02L.0202, dated March 2018 (2L Standard).

One VOC and six SVOCs were detected above the laboratory minimum detection limit; however, the concentrations were below applicable 2L Standards.

Thirteen metals were detected above the above the laboratory minimum detection limit. Two metals, iron and manganese, were detected above the 2L Standard. Temporary monitoring wells frequently yield analytical groundwater samples with elevated turbidity as the result of excessive silt/sediment in the sample. The elevated turbidity in the groundwater sample can result in metals concentrations that are higher than what is representative of actual groundwater conditions.

Limited Phase II ESA - Approximate 3.5-Acre Site Waynesville, Haywood County, North Carolina

Boring ID	Parcel Number	Property Owner	Well Owner
B-1 through B-5	8605-72-5769	Tolar, Glenn M	Tolar, Glenn M

After groundwater sampling, each TMW was abandoned pursuant to NCDEQ Well Construction Standards.

The following table provides information concerning the groundwater samples collected:

Boring ID	Sample ID	Total Boring Depth (ft bgs)	Screened Interval Depth (ft bgs)	Depth to Water (ft bgs)	
B-1	GW-1	10.0	4.8-9.8	8.32	
B-2	GW-2	13.0	5.8-10.8	6.40	
B-3	GW-3	10.0	4.8-9.8	5.87	
B-4	GW-4	10.0	4.3-9.3	5.71	
B-5	GW-5	10.0	3.8-8.8	4.51	

Limited Phase II ESA – Approximate 3.5-Acre Site Waynesville, Haywood County, North Carolina

A. The GeoProbe Macrocore sampling system was decontaminated between boring locations with a water and Alconox® detergent solution.

BLE field personnel collected a soil sample from each boring for submittal to an analytical laboratory. The soil boring and corresponding depth interval collected for analytical sampling was selected based on field screening results. Site observations, and visual observation of the soil cores.

In the field, soil samples were placed into laboratory prepared sample containers, marked with identifying numbers, and placed in a cooler where they were maintained at approximately 4° Celsius using ice. The samples were then transported to a North Carolina certified laboratory, Pace Analytical Services (Pace) in West Columbia, South Carolina, for analysis.

The following table provides information concerning the soil samples collected:

	Soil Sa	mple for Laboratory An	alysis
Boring ID B-1 B-2 B-3 B-4	Sample ID	Sample Depth (feet below ground surface)	PID Reading (parts per million)
B-1	B-1 (2)	2.0	0.3
B-2	B-2 (3.5)	3,5	0.4
B-3	B-3 (2)	2.0	0.1
B-4	B-4 (5)	5.0	0.3
B-5	B-5 (2)	2.0	0.1

2.3 Groundwater Assessment

After soil sampling activities, a temporary groundwater monitoring well (TMW) was installed at each boring location for groundwater sampling. Each TMW was constructed of 1-inch diameter PVC casing with flush-threaded joints. The bottom 5-foot section of each TMW was a manufactured well screen with machined slots.

Groundwater was extracted from each TMW with unused polypropylene tubing and a peristaltic pump. Prior to sampling, each well was purged to allow for the collection of a sample representative of current aquifer conditions and to provide adequate flow of groundwater into the well screen. Purging was considered complete when field parameters stabilized. Refer to **Appendix B** for Groundwater Sampling Logs.

In the field, groundwater samples were placed into laboratory prepared sample containers, marked with identifying numbers, and placed in a cooler where they were maintained at approximately 4° Celsius using wet ice. The samples were then transported to Pace for analysis.

According to NCDEQ Well Construction Standards, a TMW is considered a monitoring well. Since each boring advanced was converted into a TMW, five monitoring wells were installed during this assessment. The following table documents the boring IDs, parcel number for which the borings were advanced, property owner, and well owner.

Limited Phase II ESA – Approximate 3.5-Acre Site Waynesville, Haywood County, North Carolina

2.0 SCOPE OF WORK COMPLETED

At the request of the Town of Waynesville, BLE advanced five borings for the collection of soil and groundwater samples.

On May 18, 2021, BLE personnel mobilized to the Site and directed the advancement of five borings (B-1 through B-5) to assess Site conditions (Figure 2). Borings were advanced by a North Carolina licensed driller from JG Drilling of Easley, South Carolina (Jeff Grant) while being supervised by a BLE geologist. Borings were advanced with the use of a Track Mounted GeoProbe®. Boring locations were selected based historical Site features. The following table documents the boring ID's, general boring locations, and samples collected for analysis.

Boring ID	General Location	Soil Sample	Groundwater Sample	
B-1	Approximate location of a former 1,000-gallon kerosene aboveground storage tank	Yes B-1 (2)	Yes GW-1	
B-2	Approximate location of the former oil tank house	Yes B-2 (3.5)	Yes GW-2	
В-3	Approximate location of a former leach house and in a presumed cross-gradient location of the former boiler house and machine shop	Yes B-3 (2)	Yes GW-3	
B-4	Approximate location of a former 25,000-gallon oil tank and 50,000-gallon gallon oil tank and in a presumed downgradient location of the former boiler house and machine shop	Yes B-4 (5)	Yes GW-4	
B-5	Approximate location of former sulfuric acid shed	Yes B-5 (2)	Yes GW-5	

The soil and groundwater samples were analyzed for the following contaminants of concern:

- a. VOCs via Environmental Protection Agency (EPA) Method 8260
- SVOCs via EPA Method 8270
- c. Target Analyte List (TAL) Metals via EPA Method 6010 and Mercury via EPA Method 7471
 - Please note, the groundwater samples analyzed for metals were be filtered by the laboratory and were analyzed as dissolved metals.

2.1 Utility Mark-out

Prior to field activities, BLE contacted North Carolina 811 and submitted a ticket to locate public utilities at the proposed boring locations prior to field activities. North Carolina 811 applied spray-paint in the areas where known buried public utilities were located at the Site.

2.2 Soil Assessment

Soil samples were collected utilizing a GeoProbe[®] Marcocore sampler from each boring location. BLE screened soils from each boring in the field for the presence of VOCs using a Mini Rae 3000[®] photoionization detector (PID). Field screening values are recorded on the soil borings logs in **Appendix**

Limited Phase II ESA – Approximate 3.5-Acre Site Waynesville, Haywood County, North Carolina

BLE understands the Site is planned for redevelopment into a fire station associated with the Town of Waynesville. Due to the above listed REC, BLE performed the following scope of services to further evaluate the environmental quality of the Site.

Limited Phase II ESA - Approximate 3.5-Acre Site Waynesville, Haywood County, North Carolina

1.0 PROJECT INFORMATION

The following project information was obtained through a *Phase I Environmental Site Assessment*, 563 Hazelwood Avenue, prepared by BLE, dated March 16, 2020.

On-Site Findings

The Site consists of one parcel of land, identified by the Haywood County Tax Assessor as Tax Map Number 8605-72-5769, totaling approximately 3.5-acres. The Site is located approximately 1.5-miles southwest of downtown Waynesville, North Carolina and is located within the Waynesville city limits.

At the time of the February 24, 2020, Phase I ESA Site reconnaissance, the Site was a vacant field with areas of overgrown vegetation.

A portion of the Site formerly operated as AC Lawrence Leather Company, a tannery. Lawrence Leather was originally developed in 1895 and operated under various tenants and owners until circa 1986. According to a Levels I and II Site Evaluation, AC Lawrence Leather Company, prepared by Dames & Moore, dated August 10, 1989, the tanning process at the facility mainly involved using vegetable tanning agents (i.e., bark of mimosa and chestnut extract) with occasional re-tanning using chrome salts. The final product was a stiff leather used for shoe soles and industrial belts. After 1986, stretching and oiling of purchased, stiff, pre-tanned leather continued for about five years until circa 1991.

Former development in the vicinity of the Site included the beam house, rocker vats, finishing area, rolling room, bleaching and oiling room, the boiler house, liquor tanks, and other various out-buildings and ancillary structures. Regulatory records indicate the facility burned circa 1993 and was subsequently demolished.

Multiple environmental assessments, including soil and groundwater sampling, have been performed on the property formerly occupied by AC Lawrence Leather. Soil and groundwater contamination from metals, volatile organic compounds (VOCs), and semi-volatile organic compounds (SVOCs) has been documented during previous assessments. It should be noted, the North Carolina Department of Environmental Quality (NCDEQ) has reviewed previous environmental assessment reports prepared at the Site, and the NCDEQ has not required additional assessment and/or remedial activities at the Site. In an October 7, 1998, letter the NCDEQ stated, "Based on the report findings, the NC Superfund Section recommends that the Site be placed in the No Further Remedial Action Planned (NFRAP) status."

Due to this historical use of the Site as a tannery and the documented soil and groundwater contamination associated with the AC Lawrence Leather Company, BLE identified the AC Lawrence Leather Company a REC during the Phase I ESA.

Off-Site Findings

Surrounding properties generally consist of mixed commercial, light industrial, and residential developments. North of the Site is undeveloped land, followed by Hazelwood Avenue and single-family residences. South of the Site is a junk yard and single-family residences. East of the Site is Salon 212 and Penske Truck Rental. West of the Site is wooded land, followed by single-family residences and North Hazelwood Baptist Church. Southeast of the Site is Giles Truck Rental and Premier Magnesia (Chemical Manufacturer).

BLE did not identify RECs associated with surrounding properties to the Site.

Limited Phase II ESA – Approximate 3.5-Acre Site Waynesville, Haywood County, North Carolina

TABLE OF CONTENTS

1.0	PROJECT INFORMATION	1
2.0	SCOPE OF WORK COMPLETED	3
2.1	Soil Assessment	3
2.2	Groundwater Assessment	4
3.0	ANALYTICAL RESULTS	6
3.1	Soil Sample Analytical Results	6
3.2	Groundwater Sample Analytical Results	6
4.0	CONCLUSIONS	7
5.0	QUALIFICATION OF REPORT	8

TABLES

Soil Analytical Results - Volatile Organic Compounds (VOCs)
Soil Analytical Results - Semi-Volatile Organic Compounds (SVOCs)
Soil Analytical Results - Metals
Groundwater Analytical Results - Volatile Organic Compounds (VOCs)
Groundwater Analytical Results - Semi-Volatile Organic Compounds (SVOCs)
Groundwater Analytical Results - Dissolved Metals

FIGURES

Figure 1	Site Location Map
Figure 2	Boring Location Plan
Figure 2	Boring Location Plan and Historical Features

APPENDICES

Appendix A	Soil Boring Logs
Appendix B	Field Data Information Sheets for Groundwater Sampling
Appendix C	Laboratory Analytical Results

LIMITED PHASE II ENVIRONMENTAL SITE ASSESSMENT

APPROXIMATE 3.5-ACRE SITE 563 HAZELWOOD AVENUE WAYNESVILLE, HAYWOOD COUNTY NORTH CAROLINA

Prepared For:

Town of Waynesville 129 Legion Drive Waynesville, North Carolina 28786

BLE Project Number J21-14542-03

June 8, 2021

June 8, 2021

Town of Waynesville 129 Legion Drive Waynesville, North Carolina 28786

Attention:

Mr. Rob Hites

Subject:

Limited Phase II Environmental Site Assessment

Approximate 3.5-Acre Site 563 Hazelwood Avenue

Waynesville, Haywood County, North Carolina

BLE Project Number J21-14542-03

Dear Mr. Hites,

Bunnell Lammons Engineering, Inc. (BLE) is pleased to submit this Limited Phase II Environmental Site Assessment (ESA) for the above referenced subject property, herein referred to as Site. Our services were performed as outlined in BLE Proposal No. P21-0999, dated May 4, 2021. The purpose of this assessment was to determine if Recognized Environmental Conditions (RECs) identified during a Phase I ESA have potentially impacted the Site.

The findings contained herein are based upon the data that was reviewed and documented in this report along with our experience on similar projects. The discovery of any additional information concerning the environmental conditions at the Site should be reported to us for our review so that we can reassess potential environmental impacts, if necessary.

We appreciate the opportunity to work with you on this project. Please call us if you have any questions or if we may be of further service.

Sincerely,

BUNNELL LAMMONS ENGINEERING, INC.

Daniel R. Matz, P.E. Environmental Engineer Licensed, North Carolina No. 473

Daniel P. Osbourne, P.G.

Senior Hydrogeologist Licensed, North Carolina No.

SC DHEC No: 32010001

NELAC No: E87653

NO DENR No: 329

NC Field Paramoters No: 5839

Case Narrative Bunnell-Lammons Engineering, Inc. Lot Number: WE10034

This Report of Analysis contains the analytical result(s) for the sample(s) listed on the Sample Summary following this Case Narrative. The sample receiving date is documented in the header information associated with each sample.

All results listed in this report relate only to the samples that are contained within this report.

Sample receipt, sample analysis, and data review have been performed in accordance with the most current approved The NELAC Institute (TNI) standards, the Pace Analytical Services, LLC ("Pace") Laboratory Quality Manual, standard operating procedures (SOPs), and Pace policies. Any exceptions to the TNI standards, the Laboratory Quality Manual, SOPs or policies are qualified on the results page or discussed below.

Where applicable, all soil sample results (including LOQ and DL if requested) are corrected for dry weight unless flagged with a "W" qualifier.

If you have any questions regarding this report please contact the Pace Project Manager listed on the cover page.

VOCs by GC/MS

The method blank for analytical batch 92459 contained 1,2-Dichlorobenzene greater than the acceptance criteria. The associated sample, WE10034-010, did not contain detections for the target analyte; therefore, re-extraction and/or re-analysis of sample was not performed.

The first run of sample -002 was analyzed with failing internal, so the sample was re-analyzed. During the second run the LCS failed high for Acetone and the sample yielded a detection for this compound. Results from the second run have been reported and qualified with an "L".

Internal standard response for the following sample exceeded the lower control limit; WE10034-004. The sample was re-analyzed with concurring results. As such, the sample results may be biased high. The original set of data has been reported

SVOCs by GC/MS

Due to the large number of spiked analytes, there is a high probability that one or more analytes will recover outside acceptance limits. The laboratory's SOP allows for 10% of analytes to recover marginally outside criteria. The following analytes recovered marginally outside LCS criteria: 2,4-Dinitrophenol.

The method blank associated with batch 91939 yielded a "J" value detection for Di-n-butyl phthalate. No corrective action is required as this is an estimated value recovered below the LOQ. Associated detections have been qualified with a "B".

The following sample was diluted due to the nature of the sample matrix: WE10034-002. The LOQ has been elevated to reflect the dilution.

The method blank associated with batch 92194 yielded a "J" value detection for bis(2-Ethylhexyl)phthalate. No corrective action is required as this is an estimated value recovered below the LOQ. Associated detections have been qualified with a "B". The associated LCS recovered multiple compounds above method criteria. No corrective action is required as all associated samples were below the LOQ for associated compounds.

Pace Analytical Services, LLC *(formerly Sheaty Environmetal Services, Inc.)* 106 Vantago Point Drive West Columbia, SC 28172 (805) 791-9700 Fex (803) 791-9111 www.pacelaos.com

SCIDHEC No: 32018881

NELAC No: E87653

NC DENR No: 329

NC Field Parameters No: 5839

Metals by ICP-MS

The method blank associated with batch 92127 yielded a "J" value detection for Chromium. No corrective action is required as this is an estimated value recovered below the LOQ. Associated detections have been qualified with a "B".

Sample Summary Bunnell-Lammons Engineering, Inc.

Lot Number: WE10034

Sample Number	Sample ID	Matrix	Date Sampled	Date Received
001	B-1 (2)	Solid	05/07/2021 1430	05/10/2021
002	B-2 (3.5)	Solid	05/07/2021 1440	05/10/2021
003	B-3 (2)	Solid	05/07/2021 1450	05/10/2021
004	B-4 (5)	Solid	05/07/2021 1500	05/10/2021
005	B-5 (2)	Solid	05/07/ 2 021 1510	05/10/2021
006	GW-1	Aqueous	05/07/2021 1300	05/10/2021
007	GW-2	Aqueous	06/07/2021 1000	05/10/2021
800	GW-3	Aqueous	06/07/2021 1130	05/10/2021
009	GW-4	Адиерив	05/07/2021 1220	05/10/2021
010	GW-6	Адшерця	05/07/2021 1050	05/10/2021

(10 samples)

Detection Summary

Bunnell-Lammons Engineering, Inc.

Lot Number: WE10034

Sampl	e Sample ID	Matrix	Parameter	Method	Rosult	Q	Units	Page
001	B-1 (2)	Solid	Arithracene	8270E	50	J	ug/kg	11
001	B-1 (2)	Solid	Benzo(a)anthracene	8270E	180	8	ug/kg	11
001	B-1 (2)	Solid	Benzo(a)pyrene	8270E	160	S	ug/kg	11
001	B-1 (2)	Solid	Benzo(b)fluoranthene	8270E	· 180	8	ug/kg	11
001	B-1 (2)	Şolid	Bonzo(g,h,i)pery le ne	8270E	73		นตู/หิตู	11
001	R-1 (2)	Solid	Benzo(k)fluorantheno	8270E	81		ug/kg	11
001	B-1 (2)	Solid	Chrysene	8270E	140	5	ug/kg	12
001	B-1 (2)	Solid	Fluoranthene	8270E	330	S	ug/kg	12
001	B-1 (2)	Satid	Indono(1,2,3-c,d)pyrene	8270E	60	Ĵ	ug/kg	12
001	B-1 (2)	Sa!ld	2-Methylnaphthalana	8270년	100		ng/kg	12
001	B-1 (2)	Solid	Naphthalano	8270E	75		ug/kg	12
001	B-1 (2)	Salld	Phenanthrefie	8270F.	190	s	ug/kg	13
001	B-1 (2)	Solid	Pyrene	8270E	210	\$	ug/kg 	13
601	B-1 (2)	Solid	Aluminum	6020B	43000	S	mg/kg	13
001	H-1 (2)	Solid	Arsenio	6020B	1.5	_	mg/kg	13
001	B-1 (2)	Solid	Barlum.	60 2 0B	160	5	mg/kg	13
001	R-1 (2)	Solid	Beryllium	6020B	0.37	S	mg/kg	13
001	B-1 (2)	Solid	Cadmium	6020B	0.078	J	mg/kg	13
001	B-1 (2)	Solid	Calcium	6020B	820	5	mg/kg	13
001	B-1 (2)	Solid	Chrom'um	€ 02 0 B	37	В	nig/kg	13
001	B-1 (2)	Salid	Cobalt	602 0 B	11		mg/kg	13
001	B-1 (2)	Solid	Copper	6020B	26		nig/kg	13
001	B-1 (2)	Salid	!ron	6020B	41000	S	mg/kg	13
001	B-1 (2)	Solid	Lead	60 2 0B	22		mg/kg	13
601	B-1 (2)	Solid	Magnesium	6020B	2100	S	mg/kg	13
€01	B-1 (2)	Solid	Manganese	6020B	390	S	rng/kg	13
001	8-1 (2)	Solid	Mercury	7471B	0,028	J	mg/kg	13
001	B-1 (2)	Solid	Nickel	6020B	14		mg/kg	13
001	B-1 (2)	Solid	Potassium	6020B	2700	S	mg/kg	13
001	B-1 (2)	Solid	Selectum	6020B	0.51	J	mg/kg	13
001	B-1 (2)	Solid	Thallium	8020B	0.24		mg/kg	14
001	8-1 (2)	Solid	Vanadium	8020B	63	s	mg/kg	14
001	B-1 (2)	Salld	Zinc	602 0 B	64		mg/kg	′4
002	B-2 (3.5)	Salld	Acetone	82.600	89	L.	u g/kg	15
002	B-2 (3.5)	Solid	2-Butanone (MEK)	8260D	12	J	ug/kg	16
002	B-2 (3.5)	Şelid	Carbon disulfide	82600	5.6	J	ug/kg	15
002	B-2 (3.5)	Solid	Aluminum	6020B	40000		mg/kg	18
002	B-2 (3.5)	Solid	Arsenic	6020B	1.6		mg/kg	18
092	B-2 (3.5)	Solid	Barlum	6020B	180		mg/kg	18
002	8-2 (3.5)	Solid	Beryllium	6020B	0,23		mg/kg	18
002	B-2 (3.5)	Solid	Çaldum	6020B	2000		mg/kg	18
002	R-2 (3.5)	Solid	Chromium	6020B	41	В	mg/kg	18
002	B-2 (3.5)	Solid	Cobell	6020B	13		mg/kg	18
002	B-2 (3.5)	Şalld	Соррег	6020B	27		mg/kg	18
002	H-2 (3.5)	Solid	Iron	8030B	47000		mg/kg	18

Lot Number: WE10034

Sampl	e Sample ID	Matrix	Parameter	Method	Result	Q	Units	Page
002	B-2 (3.5)	Solid	Lead	8020B	10		mg/kg	18
002	B-2 (3.5)	Solid	Magneslum	6020B	5200		mg/kg	18
602	B-2 (3.5)	Solid	Manganese	6020B	320		mg/kg	18
002	B-2 (3.6)	Solid	Mercury	7471B	0.022	J	mg/kg	18
002	B-2 (3.5)	Solid	Nickel	6020B	21		mg/kg	18
002	B-2 (3.5)	Solid	Potassium	6020B	2300		m:g/kg	18
002	B-2 (3.5)	Solid	Selenium	6020B	0.79	J	mg/kg	18
002	B-2 (3.5)	Solid	Sodium	6020B	78	J	mg/kg	19
002	B-2 (3.5)	Solid	Thallium	6020B	0.37		mg/kg	19
002	B-2 (3.5)	Solid	Vanadium	6020B	64		mp/kg	19
002	B-2 (3.5)	Solid	Zinc	602 0 B	94		mg/kg	19
003	B-3 (2)	Solid	Di-n-bulyi prithalate	8270E	6.2	BJ	ug/kg	22
003	B-3 (2)	Solid	2-Methylnaphthalene	8270E	2.3	J	ug/kg	22
003	B-3 (2)	Solid	Nephthalene	8270E	2.0	J	ug/kg	22
003	B-3 (2)	Solid	Aluminum	6020B	34000		mg/kg	23
003	8-3 (2)	Solid	Areenic	6020B	2.8		mg/kg	23
003	B-3 (2)	Solid	Barlum	6020B	150		mg/kg	23
000	B-3 (2)	Solid	Beryllium	6020B	0.18		mg/kg	23
003	B-3 (2)	Solid	Cadmlum	6026B	0.058	J	mg/kg	23
003	B-3 (2)	Solid	Calcium	6020B	230		mg/kg	23
CC3	B-3 (2)	Solid	Chromlum	6020B	30	В	mg/kg	23
003	B-3 (2)	Solid	Cobalt	6020B	18		mg/kg	23
003	B-3 (2)	Solld	Capper	6020B	29		mg/kg	23
003	B-3 (2)	Solid	Iron	60208	47000		mg/kg	23
003	B-3 (2)	Solid	Lead	6020B	13		mg/kg	23
003	B-3 (2)	Solid	Magnesium	6020B	4300		mg/kg	23
003	B-3 (2)	Selld	Manganese	60208	1000		mg/kg	23
003	B-3 (2)	Salld	Mercury	7471B	0.053	J	mg/kg	23
003	B-3 (2)	Solid	Nickel	80208	26		mg/kg	23
003	B-3 (2)	Solid	Potassium	8020B	4600		mg/kg	23
003	B-3 (2)	Solid	Selonium	6 0 20B	1.2	J	mg/kg	23
003	B-3 (2)	Solid	Silver	6020B	0.090	J	mg/kg	24
003	B-3 (2)	Salld	Sodium	8020B	46	J	mg/kg	24
003	B-3 (2)	Salid	Thal-lum	6020B	0.51		mg/kg	24
003	B-3 (2)	Solid	Vanadium	8020B	53		mg/kg	24
003	B-3 (2)	Salid	Zinc	8020B	110		mg/kg	24
004	B-4 (5)	Solid	Carbon disulfide	8260D	9.1		ug/kg	25
004	B-4 (5)	Solid	Cyclohexane	8260D	5.9	J	ug/kg	25
004	8-4 (5)	Solja	Methylcyclohexane	8260D	14		ug/kg	. 25
004	B-4 (5)	Solid	Toluene	8260D	9.7		ug/kg	25
004	B-4 (6)	Solid	Xylenes (total)	8260D	14	J	ug/kg	23
004	B-4 (5)	Solid	Anthracene	8270E	89		ug/kg	26
004	B-4 (5)	Solid	Benzo(a)anthracene	8270E	190		ug/kg	26
-	B-4 (5)	Solid	Benzo(a)pyrene	8270E	190		ug/kg	26
CC4	B-4 (5)	Solid	Bonzo(b)fluorenthene	8270E	280		ug/kg	26
004	B-4 (5)	Solid	Benzo(g,h,i)parylene	8270E	110		ug/kg	26
004	B-4 (5)	Solid	Benzo(k)fluoranthene	8270E	88		ug/kg	26
304	B-4 (5)	Solid	Chrysona	8270E	260		ug/kg	27

Pada Analythal Sarvidas, LLC - *(formerly Sheary Environmental Sarvidas, Inc.)* 106 Vantage Point Drive - West Columbia, SC 29172 - (803) 791-9700 - Fax (803) 791-9111 - www.padelebs.com

Lot Number: WE10034

Sample	e Sample ID	Matrix	Parameter	Method	Rosult	Q	Units	Pago
004	B-4 (5)	Solid	Dibanzofuran	8270⊡	310		ug/kg	27
004	B-4 (5)	Solid	Fluoranthene	8270E	350		ug/kg	27
004	B-4 (5)	Solid	Indeno(f,2,3-c,d)pyrene	8270≓	63		ug/k ģ	27
004	B-4 (5)	Solid	2-Methylnaphthalene	8270E	1600		ug/kg	27
004	B-4 (5)	Solid	Naphthaieno	8270F	980		ug/kg	27
004	B-4 (5)	Solid	Phonanthrene	8270E	920		ug/kg	28
004	B-4 (5)	Solid	Pyrene	8270E	310		ug/kg	28
004	B-4 (S)	Solld	Aluminum	6020B	7600		mg/kg	28
004	B-4 (5)	Solid	Antimony	6029B	1.8		mg/kg	28
004	B-4 (5)	Solid	Arsenic	5020B	7.5		mg/kg	28
004	B-4 (6)	Soild	Barium	8020B	490		mg/kg	28
004	B-4 (5)	Solid	Berylllum	802 0 B	0.32		mg/kg	28
200	B-4 (5)	Salld	Cadmium	8020B	0.18		mg/kg	28
004	B-4 (5)	Solid	Caldum	8020B	18000		mg/kg	28
004	B-4 (5)	Salld	Chromium	8020B	10	В	nīg/kg	28
304	B-4 (5)	Solid	Cobalt	6020B	4.9		mg/kg	28
004	B-4 (5)	Salld	Соррег	6020B	410		mg/kg	28
004	B-4 (5)	Salld	Iron	6020B	15000		mg/kg	28
004	B-4 (5)	Solid	Lead	6020B	55		mg/kg	28
004	8-4 (5)	Solid	Magnesium	6020B	1000		mg/kg	28
004	B-4 (5)	Solid	Manganese	6020B	380		m.g/kg	28
D04	H-4 (5)	Solid	Mercury	74719	0.089	J	mg/kg	28
004	D-4 (5)	Solid	Nickel	6020 8	13		mg/kg	28
004	B-4 (5)	Solid	Patassium	6020D	980		mg/kg	28
004	B-4 (5)	Solid	Selenium	6020B	1.5		mg/kg	28
004	B-4 (5)	Solid	Sodlum	60208	140		mg/kg	29
004	B-4 (5)	Solid	Thaltium	6020B	0.18		mg/kg	29
004	B-4 (5)	Solid	Venadlum	6020B	22		mg/kg	29
004	B-4 (6)	Solid	Zino	6020B	70		mg/kg	29
005	B-5 (2)	Solid	Aluminum	6020B	31000		mg/kg	30
005	B-5 (2)	Solid	Arsenio	8020B	8.1		mg/kg	33
005	B-5 (2)	Solid	Barum	8D20B	120		mg/kg	33
005	B-5 (2)	Solid	Berylllum	6050B	0.4f		mg/kg	33
095	B-5 (2)	Solid	Caldum	8020B	180	_	mg/kg	33
005	B-5 (2)	Solit	Сhromium	6020B	19	В	mg/kg	33
005	B-5 (2)	Solld	Cobalt	6020B	8.4		mg/kg	33
005	B-5 (2)	Solid	Copper	6020B	11		mg/kg	33
GG5	B-5 (2)	Solid	Iron	8020B	29000		mg/kg 	33
005	B-5 (2)	Solid	Lead	8020B	12		mg/kg	33
005	B-5 (2)	Solid	Magnesium	6020B	2800		mg/kg 	33
005	B-5 (2)	Solid	Manganese	8020B	170		mg/kg	33
005	B-5 (2)	Solid	Nickel	8020B	12		mg/kg 	33
005	B-5 (2)	Solid	Potassium	6020B	4600		mg/kg	33
005	B-5 (2)	Salld	Salanlum	8020B	0.67	J	mg/kg	, 33
D 05	B-5 (2)	Soild	Thallium	6020B	0.44		nig/kg	34
005	B-5 (2)	Soad	Vanadium	6020B	41		mg/kg "	34
005	B-6 (2)	Solid	Zinc	6020B	50		mg/kg	34
DOB	GW-1	Aqueous	Diethylphthalate	8270E	0.35	J	ug/L	37

Lot Number: WE10034

006 0 006 0 008 0 006 0 006 0	GW-1 GW-1 GW-1	Aqueous	bis(2-Ethylhexyl)phthalate Dissolved Barium	8270E 6020B	0.72	BJL	ug/L	Page 37
006 0 006 0 006 0 006 0	GW-1 GW-1 GW-1	Aqueous	Dissolved Barium	6020B	70			
008 0 006 6 006 6 008 6	GW-1 GW-1				73		ug/L	38
006 G 006 G 008 G	GW-1	Aquecus	Dissolved Calcium	6020B	50000	5	ug/L	38
006 G 008 G			Dissolvod Iron	6020B	13	J	ug/L	39
006 G	GW41	Aqueous	Dissolved Magnesium	6020B	6000		ug/L	39
006 6		Aqueous	Dissolved Manganese	63208	150		ьg/L	39
	GW-1	Aqueous	Dissolved Mickel	6020B	2.0	J	υg/L	39
006 G	GW-1	auceupA	Dissolved Potassium	6020B	5900		ug/L	39
	3W-1	Aqueous	Dissolved Sodjum	60203	3400		ug/L	39
007 G	3W-2	Аqueouв	Carbon disuffide	82600	0.42	J	ug/L	40
007 G	GW-z	Aqueous	Diethylphthalato	8270E	0.41	J	ug/L	42
007 G	GW-2	Aqueous	bls(2-Ethylhexyl)phthafate	8270E	1.4	BJL	ug/L	42
007 C	DW-2	Aqueous	Dissolved Aluminum	6020B	170		ug/L	43
007 G	GW-2	Адцерца	Dissolved Antimony	6020B	1.1	J	ug/L	43
007 G	GW-2	Aqueous	Dissolved Barium	6020B	49		ug/L	43
007 G	9W-2	euceupA	Diasolved Caldium	6020B	87000		ug/L	43
007 G	GW-2	Aqueous	Dissolved Cobalt	6020B	3.3	J	ug/L	43
007 G	3W-2	Aqueous	Dissolved Iron	6020B	1600		ug/L	44
007 G	3W-2	Aqueous	Dissolved Magneeivm	6020B	24000		ug/L	44
007 G	GW-2	alcoupA	Dissolved Manganese	8020B	1100		ug/L	44
0 0 7 G	3W - 2	Aqueous	Dissolved Nicket	6020B	1.8	J	ug/L	44
007 G	GW-2	Aqueous	Dissolved Potassium	6020B	4400		ug/L	44
007 G	3W-2	Aqueous	Dissalved Sadium	8020B	5700		ug/L	44
008 G	ЭW-э .	Aqueous	bis(2-Sthylhexyl)phthalate	8270E	0.70	BJL	ug/L	47
0,08 G	GW-3 .	Aqueous	Dissolved Aluminum	602QH	51		ug/l.,	48
008 G	GW-3	Aqueous	Dissolved Antimony	6020B	0.80	J	ug/L	48
008 G	3W-3 .	Aqueous	Dissolved Barium	6020B	120		ug/L	48
008 G	3W-3 ,	Aquools	Dissolved Calgium	6020B	120000		ug/L	48
008 G	θW-3 .	Aqueous	Dissolved Cappor	6020B	1.8	J	ug/L	48
		Aquenus	Dissolved Iron	6020B	110		ug/L	49
008 G	3W-3 ,	Aqueous	Dissolved Magnesium	6020B	14000		ug/L	49
008 G	GW-3	Aqueous	Dissolved Manganese	60203	160		ug/L	49
008 G	3W-3 ,	Aquequs	Dissolved Nickel	60208	13		ug/L	49
008 G	3W-0 ,	Aqueous	Dissolved Potassium	60208	7900		ug/L	49
D08 G	3W-3	Aqueous	Dissolved Sodlum	6020B	4200		ug/L	49
008 G	, E-WE	Aqueous	Dissolved Vanadium	6020B	â.9		ug/L	49
	DW-4	Aqueous	bis(2-Ethylhexyl)phthalate	827 0 E	0.63	BJL	ug/L	52
		Aqueous	2-Methylnaphthalone	8270E	0.043	J	αg/L	52
009 G	3W-4 _. ,	Aqueous	Naphthalene	8270E	0.051	J	ս ք/Լ	52
009 G	5VV-4 /	Р евовир	Dissolved Aluminum	6020B	13	J	ug/L	53
		Афиврив	Dissolved Antlinony	6020B	2.1		ug/L	53
		Aqueous	Dissolved Barlum	8020B	210		ug/L	53
		Адиесив	Dissolved Calcium	6020B	120000		ug/L	53
		Ацивона	Dissolved for	6020B	29	J	ug/L	54
		Aqueous	Dissolved Magnesium	6020B	9100		ug/L	54
		Aqueous	Dissolved Manganese	6020B	940		ug/L	54
			Dissolved Nickel	6020B	1.3	1	ug/L	54
D09 G	9W-4	Aqueous	Dissolvad Potassium	6020B	7500		ug/L	54

Page Analytical Services, LLC (formerly Shooty Environmental Services, Inc.)
106 Vantage Point Drive West Columbia, SC 29172 (803) 791-9700 Fax (803) 791-9111 www.pacelaba.com

Lot Number: WE10034

Sample	Sample ID	Matrix	Parameter	Mothod	Result	Q	Units	Page
009	GW-4	Aqueous	Olssolved Sodium	6020B	8900		ug/L	54
010	GW-5	Aqueous	Aconaphthene	8270E	0.945	J	ug/L	56
010	GW-6	Aqueous	Diethylphthalate	8270E	0.43	J	ug/L	57
010	GW-5	Aqueous	Di-n-butyl phthelate	8270≝	1.0	J	ug/L	57
010	GW-5	Aqueous	bis(2-Ethylhexyl)phthalate	8270E	0.64	ÐJL	ug/L	57
010	GW-5	Aqueous	Diesolved Aluminum	60208	81		ug/L	68
010	GW-5	Aqueous	Dissolved Antimony	602CB	0.56	J	ug/L	58
010	GW-6	Aquaous	MuhaS bevloseid	6020B	28		ug/L	58
010	GW-5	Aqueous	Dissolved Calcium	6020B	80000		ug/L	58
010	GW-5	Aquaous	Dissolved Iron	6020B	2300		ug/L	58
010	GW-5	Aqueous	Dissolved Magnoslum	6020B	15000		ug/L	69
010	GW-5	Aquaaus	Dissolved Manganese	6020B	430		ug/L	59
010	GW-5	Aqueous	Disenived Nickel	8020B	1.6	J	ug/L	59
010	GW-8	Aqueous	Dissolved Potassium	8020B	8900		ug/L	59
010	GW-5	Aqueous	Discolved Sodium	60208	7400		ug/L	59

(204 detections)

Doscripțion: B-1 (2)

Date Sampled:05/07/2021 1430

Date Received: 05/10/2021

Laboratory ID:WE10034-001

Matrix: Solid

% Solids: 85.4 05/11/2021 0008

Volatile Organic Compounds by GC/MS

Run 1	Prep Method 5036	Analytical Method 8260D	Dilution 1	-	Date Analyst 1 1145 JM1	Prep Date	Batch 92636	Sample Wt.(g) 5.73		,
Para	ımeter			CAS A	Analytical Method	Result Q	LOQ	DL	Units	Run
Aceto	ono	•	67-	64-1	8280D	ND	20	0.2	ualka	- 4

Parameter	CAS Number	Analytical Method	Result (a LOQ	DL	Units	Run
Acetono	67-64-1	82800	ND	20	8.2	ug/kg	- 4
Benzone	71-43-2	8280D	ND	5.1	2.0	ug/kg	
Bromodichloromethane	75-27-4	8280D	ND	5.1	2.0	ug/kg	
Bramoform	75-25-2	82 6 0D	ND	5.1	2.0	ug/kg	:
Brornomethane (Methyl bromide)	74-83-9	8260D	ND	5.1	3.1	ug/kg	1
2-Butanone (MEK)	78-93-3	8280D	ND	20	4.1	ug/kg	1
Carbon disulfido	75-15-0	8260D	No	5.1	2.0	ug/kg	1
Carbon totrach!orlde	56-23-5	82600	CN	5.1	2.0	ug/kg	1
Chlorobenzene	108-90-7	8260D	ND	5.1	2.0	ug/kg	1
Chloroethene	75-00-3	8260D	ND	6.1	2,0	ug/kg	1
Chloraform	67-68-3	8260D	ND	5.1	2.0	ug/kg	1
Chloromethane (Methyl chloride)	74-87-3	8260D	ND	5.1	3.1	ug/kg	1
Cyclohexana	110-82-7	8260D	ND	5.1	2.0	ug/kg	1
1.2-Dibromo-3-chloropropane (DBCP)	96-12-8	8260D	ND	5.1	2.0	ug/kg	1
Dibramachiorarnethane	124-48-1	8260D	ND	5.1	2.0	ug/kg	1
1,2-Dibromoethane (EDB)	106-93-4	8260D	ND	5.1	2.0	ug/kg	1
1,2-Dichlorobenzene	95-50-1	8260D	ND	5.1	2.0	ug/kg	1
1,3-Dichlorobenzene	541-73-1	8260D	ND	5.1	2.0	ug/kg	1
1,4-Dichlorobenzona	106-46-7	8260D	ND	5.1	2.0	ug/kg	1
Dichlorodif:Loromothane	75-71-8	8260D	ND	5.1	3.1	ug/kg	1
1,1-Dichloroothane	75-34-3	8260D	ND	5.1	2.0	ug/kg	1
1,2-Dichtoroothane	107-0 6- 2	8260D	NΠ	5.1	2,0	ug/kg	1
1,1-Dichloroethene	75-3 5 -4	8260D	ND	5.1	2.0	ug/kg	1
cis-1.2-Dichloroethene	156-59-2	8260D	ND	5.1	2.0	ug/kg	1
trans-1,2-Dichloroethene	156 -6 0-5	8260D	ND	5.1	2.0	ug/kg	1
1,2-Dichloropropano	78-87-5	8260D	ND	5.1	2.0	ug/kg	1
ds-1.3-Dichloropropene	10061-01-5	8260D	NI3	5.1	2.0	ug/kg	1
trans-1,3-Dichloropropene	10061-02-6	8260D	ND	5.1	2,0	ug/kg	1
Ethylbenzene	100-41-4	8260D	ND	6.1	2.0	ug/kg	1
2-Hexarone	591-78-6	8260D	ND	10	4.1	ug/kg	1
Isapropylbenzene	98-82-8	826013	ND	5.1	2.0	ug/kg	1
Methyl acetate	79 - 20-9	82600	ND	5.1	2.0	u g /kg	1
Methyl tertiary butyl ether (MTBR)	1634-04-4	8260D	ND	5.1	2.0	ug/kg	1
4-Methyl-2-pentarione	108-10-1	8260D	ND	10	4.1	ug/kg	1
Methylcyclohexane	108-87-2	8260D	ND	5.1	2.0	ug/kg	1
Methylene chloride	75-09-2	8260D	ND	5.1	2.0	ug/kg	1
Styrene	100-42-5	8260D	ND	5.1	2.0	ug/kg	1
1.1,2,2-Tetrachloroethane	79-34-5	8260D	ND	5.1	2.0	ug/kg	1
Tetrachloroethene	127-18-4	8260D	ND	5.1	2.0	ug/kg	1
Toluene	108-88-3	8260D	ND	5.1	2.0	ug/kg	1

LOQ = Umil of Quantitation	B = Datected in the method blank	R = Quentitation of compound exceeded the collection rapge	DL = Detaction _ mit	Q = Surrogala failure
NG = Not détectes at priabovo (ης Ωίν	N = Recovery is out of oritoria	T → The RPD between two SC columns exceeds 40%	J = Estimated result < LCQ and ≥ DL	L = LCS/LCSD failure
H = Out of holding time	W = Reported on we, weight basis			3 = MS/MSD f8 lung

Description: B-1 (2)

Date Sampled:05/07/2021 1430

Data Recolvod: 05/10/2021

Laboratory ID: WE10034-001

Matrix: Solid

% Solids: 85.4 05/11/2021 0008

Volatile Organic Compounds by GC/MS

Run Prep Method 1 5036	Analytical Metho 82600		•	is Date Analyst 021 1145 JM1	Prep Date	Batch 92638	Sample Wt.(g) 6.73		
Parameter			CAS mber	Analytical Method	Result Q	LOQ	DL	Units	Run
1,1,2-Trichloro-1,2.2-Trifluoroethans		76-	-13-1	8280D	ND	5.1	2.0	ug/kg	1
1,2,4-Trichlorobenzene		120-	82-1	8260D	ND	5.1	2.0	ug/kg	1
1,1,1-Trichloroethane		71-	-55-6	8260D	ND	5.1	2.0	ug/kg	1
1,1,2-Trichloroethane		79-	-00-5	8260D	ND	5.1	2.0	ug/kg	1
Trichlaroethena		79-	01-6	8260D	ND	5.1	2.0	ug/kg	1
Trichlorofluoromothane		75-	69-4	8260D	ND	5.1	2.0	ug/kg	1
Vinyl chloride		75-	01-4	8260D	ND	5.1	3.1	ug/kg	1
Xylenes (total)		1330-	20-7	8260D	ND	10	4.1	ug/kg	1
Surrogate	Q %	Run 1 Recovery	Acceptar Limits						
Brompfluarabenzana	·	103	47-138	3					
1,2-Dightoroethane-d4		94	53-142	2					
Taluene-d8		102	68-124	.					

Semivolatile Organic Compounds by GC/MS

Run Prop Method 1 3546	Analytical Method 8270F.	Dilution 20		reis Date Analyst 2021 1839 STM	Prop 05/11/2		Batch 048 9 1939			
Parameter	•		CAS nber	Analytical Method	Result	Q	LOQ	DL	Units	Run
Acenaphthene		83-	32-9	8270E	ND	·	62	19	ug/kg	1
Acenaphthylene		208-	96-8	827CE	ND		62	22	ug/kg	1
Acetophenone		98-	86-2	827CE	ND		300	110	ug/kg	1
Anthracene		120-	12-7	8270E	50	J	62	12	ugikg	1
Airazine		1912-	24-9	827CE	ND		300	110	ug/kg	1
Benzaldehyde		100-	52-7	8270E	ND	S	300	110	ug/kg	1
Benzo(a)anthracene		56-	55-3	8270E	180	8	62	13	ug/kg	1
Benzo(a)pyrene		50-	32-8	8270E	160	S	62	15	ug/kg	1
Benzo(b)fluoranthene		205-	99-2	8270E	180	\$	62	11	ug/kg	1
Bonzo(g,h,i)perylene		191-	24-2	. 8270E	73		62	15	ug/kg	1
Benzo(k)fluoranthene		207-	08-9	8270E	81		62	11	սց/հց	1
1.1'-Bipheny!		92-	62-4	8270E	ND		300	110	ug/kg	1
4-Bromophenyl pheny! other		101-	55-3	8270E	ΝĎ		300	110	ug/kg	1
Butyl berizyl phthalato		85-	68-7	8270E	ИD		300	110	ug/kg	1
Caprolactern		105-	60-2	8270E	ND		300	110	ug/kg	1
Carbazole		86-	74-8	8270E	ND		300	110	ug/kg	1
bis (2-Ch-pro-1-methylethyl) ethor	•	108-	60-1	8270E	ND		300	110	ug/kg	1
4-Chloro-9-methyl phonol		59-	50-7	8270E	MB		300	110	սց/kg	1
4-Chloroaniline		108-	47-8	8270E	ND	S	300	110	ug/kg	1
bis(2-Chloroethoxy)methano		111-	ียา-1	8270E	ND		300	110	ug/kg	1

LGQ = Limit of Quantilation	D = Celected in the method blank	$E_i = Q_i$ smillalism of compound expected the calibration range	OL - Detection Limit	Q = Su тодари failuru
ND = Not detected all or above the DL	N = Recovery is out of criteras*	P = The RPD belysen (wo GC adumns exceeds 40%	J = Estimated recall < LOQ and \geq DL	U → EGS/EGSG fallure
H = Out of bolding liquid	W = Reported on wat waight pasis.			S = NS/MSD fallure

Pada Analytica, Services, LLC. (formerly Sheaty Environmental Services, Inc.)

¹⁰⁶ Ventago Point Drive - West Columbia, SG 28172 - (803) 791-9700 - Fax (803) 781-8111 - www.pacelabs.com

Description: B-1 (2)

Date Sampled:05/07/2021 1430

Data Received: 05/10/2021

Laboratory ID:WE10034-001

Matrix: Solid

% Solids: 85.4 05/11/2021 0008

Semivolatile Organic Compounds by GC/MS

Run Prep Method Analytical Method Dilution Analysis Date Analyst Prop Date Batch 1 3546 8270E 20 05/23/2021 1839 STM 05/11/2021 2048 91939

Primare Number Method Result Q LOQ DL Units Run Disig 2-Chioroshlyblether 111-44 8276; ND 303 110 ug/kg 1 2-Chioroshlyblether 91-56-7 8270; ND 303 110 ug/kg 1 2-Chioroshlyblether 91-56-7 8270; ND 303 110 ug/kg 1 2-Chioroshlyblether 7081-7-2 8270; ND 303 110 ug/kg 1 110-100; ND 110-100; ND 110 ug/kg 1 110-100; ND 110-100; ND 110 ug/kg 1 110-100; ND 110-100; ND 110-100; ND 110 ug/kg 1 110-100; ND 110-100; ND		CAS	Analytical						
2-Chiroraphinulene					Q	-		_	
Chlorophenol									-
Achiorophenyl phenyl othor 7008-72-3 8270E ND 300 110 ug/kg 1									
Chrysene	·						-		
Dibenzo(a,h)arthracene		•	•						
Dibenzofuram	•				Ş				1
31-Dichlorobenzidine	* * * *								1
			•				110	- •	1
Dichylphthislate					S	300	110	ug/kg	1
Dimethyl phthalate	•		8270E	ND		300	110	ug/kg	1
2.4-Dimethylphenol 105-67-9 8270E ND 300 110 ug/kg 1	· ·		8270E			300	110	ug/kg	1
Di-n-butyl phthalate			8270E	ИD		300	170	ug/kg	1
AB-Dinitro-2-methylphenol 534-52-1 8270E ND S 1500 570 ug/kg 1			8270E	ND		300	110	ug/kg	1
2,4-Dinitrophenol		84-74-2	8270E			300	110	ug/kg	1
2,4-Dinitrotoluene	• •	534-52-1	8270€	ND	s	1500	570	ug/kg	1
2,8-Dinitrotoluene	2,4-Dinitrophenol	51 -2 8-6	8270E	ND	LS	1500	570	ug/kg	1
Di-n-octylphthalata	2,4-Dinitrotoluene	121-14-2	8270G	ND	8	620	230	ug/kg	1
bis(2-Ethyfhexyl)phthalate	2,6-Dinitrotoluene	808-20-2	8270E	טא		620	230	ug/kg	1
Discaplinate 117-81-7 8270E ND 5 1500 570 1989 1	Di-n-octylphthalate	117-84-0	8270E	NÞ	S	300		ug/kg	1
Fluoranthene 208-44-0 8270E 330 5 62 9.6 ug/kg 1 Fluorane 86-73-7 8270E ND 82 13 ug/kg 1 Hexachlorobenzene 118-74-1 8270E ND 300 110 ug/kg 1 Hexachlorobutacifono 87-68-3 8270E ND 1500 570 ug/kg 1 Hexachlorobutacifono 77-47-4 8270E ND 1500 570 ug/kg 1 Hexachlorobutane 67-72-1 8270E ND 300 110 ug/kg 1 Indeno(1,2,3-c,d)pyrene 193-39-5 8270E ND 300 110 ug/kg 1 Isophorone 78-59-1 8270E ND 300 110 ug/kg 1 2-Mathylnaphthalene 91-87-6 8270E ND 300 110 ug/kg 1 2-Mathylnaphthalene 166-44-5 8270E ND 8 620 230	bis(2-Ethyfhexyl)phthalete	117-81-7	8270E	ND	5	1500	570	ug/kg	1
Fluorena	Fluoranthene	206-44-0	8270E	330	5	62	9.6		1
Hexachlorobenzene	Fluorena	86-73-7	8270E	ND		62			1
Hexachlorobutaclifono	Hexachlorobenzene	118-74-1	8270년	, ND		300	110	- +	1
Hexachlorocyclopontadlene	Hexachlorobutadiono	87-88- 3	8270E	ND		300	110		1
Indeno(1,2,3-c,d)pyrene	Hexachlorocyclopontadlene	77-47-4	8270E	ND		1500	570		1
Sophorone 78-59-1 8270E ND 300 110 129/kg 1		67-72-1	8270E	ND		300	110	ug/kg	1
Sopherone 78-59-1 8270E ND 330 110 Ug/kg 1	Indeno(1,2,3-c,d)pyrene	193-39-5	8270E	60	J	62	23	ug/kg	1
2-Methylnaphthalene 91-57-6 8270E 100 62 23 ug/kg 1 2-Methylphenol 95-48-7 3270E ND 300 110 ug/kg 1 3+4-Methylphenol 106-44-5 8270E ND 8 620 230 ug/kg 1 Naphthalene 91-20-3 8270E 75 62 22 ug/kg 1 2-Nitroanilline 88-74-4 8270E ND 8 620 230 ug/kg 1 3-Nutroanilline 99-09-2 8270E ND 8 620 230 ug/kg 1 4-Nitroanilline 100-01-6 8270E ND 8 620 230 ug/kg 1 Nitrobenzene 98-96-3 8270E ND 300 110 ug/kg 1 2-Nitrophenol 88-78-8 8270E ND 8 620 230 ug/kg 1 4-Nitrophenol 100-02-7 8270E ND 8 1500 570 ug/kg 1 <td>Isophorone</td> <td>78-59-1</td> <td>8270E</td> <td>ND</td> <td></td> <td>330</td> <td>110</td> <td></td> <td>1</td>	Isophorone	78-59-1	8270E	ND		330	110		1
2-Methylphenol 95-48-7 8270E ND 300 110 ug/kg 1 3+4-Methylphenol 106-44-5 8270E ND 620 230 ug/kg 1 Naphthalene 91-20-3 8270E 75 62 22 ug/kg 1 2-Nitroanilline 88-74-4 8270F ND 620 230 ug/kg 1 3-Nutroanilline 99-09-2 8270E ND 620 230 ug/kg 1 4-Nitroanilline 100-01-6 8270E ND 620 230 ug/kg 1 Nitrobenzene 98-96-3 8270E ND 300 110 ug/kg 1 2-Nitrophenol 88-75-5 8270E ND 8 620 230 ug/kg 1 4-Nitrophenol 86-75-5 8270E ND 8 620 230 ug/kg 1 N-Nitrosodi-n-propylamine 621-84-7 8270E ND 300 110 ug/kg<	2-Methylnaphthalene	91-57-6	8270E	100		62			1
3+4-Methylphenol 106-44-5 8270E ND S 620 230 ug/kg 1 Naphthalene 91-20-3 8270E 75 62 22 ug/kg 1 2-Nitroanilline 88-74-4 8270F ND S 620 230 ug/kg 1 3-Nitroanilline 99-09-2 8270E ND S 620 230 ug/kg 1 4-Nitroanilline 100-01-6 8270E ND S 620 230 ug/kg 1 Nitrobenzene 98-96-3 8270E ND S 620 230 ug/kg 1 2-Nitrophenol 88-76-5 8270E ND S 620 230 ug/kg 1 4-Nitrophenol 100-02-7 8270E ND S 620 230 ug/kg 1 N-Nitrosodi-n-propylamine 621-84-7 8270E ND S 300 110 ug/kg 1 N-Nitrosodi-n-propylamine 621-84-7 8270E ND S 300 110 ug/kg	2-Methylphenot	95-48-7	8270E	NO		300			
Naphthalene 91-20-3 827DE 75 62 22 ug/kg 1 2-Nitroanilline 88-74-4 827CF ND S 620 230 ug/kg 1 3-Nitroanilline 99-09-2 8270E ND S 620 230 ug/kg 1 4-Nitroaniline 100-01-6 8270E ND S 620 230 ug/kg 1 Nitrobenzene 98-96-0 8270E ND S 620 230 ug/kg 1 2-Nitrophenol 88-75-5 8270E ND S 620 230 ug/kg 1 4-Nitrophenol 100-02-7 8270E ND S 1500 570 ug/kg 1 N-Nitrosodi-n-propylamine 621-64-7 8270E ND 300 110 ug/kg 1 N-Nitrosodiphenylamine (Diphenylamine) 88-30-6 8270E ND 300 110 ug/kg 1	3+4-Methylphenol	106-44-5	8270E	ND	S	620			
2-Nitroaniline 88-74-4 8270F ND S 620 230 ug/kg 1 3-Nitroaniline 99-09-2 8270E ND S 620 230 ug/kg 1 4-Nitroaniline 100-01-6 8270E ND S 620 230 ug/kg 1 Nitrobenzene 98-96-3 8270E ND 300 110 ug/kg 1 2-Nitrophenol 88-75-5 8270E ND S 620 230 ug/kg 1 4-Nitrophenol 100-02-7 8270E ND S 620 230 ug/kg 1 N-Nitrosodi-n-propylamine 621-64-7 8270E ND S 1500 570 ug/kg 1 N-Nitrosodi-n-propylamine 621-64-7 8270E ND 300 110 ug/kg 1 N-Nitrosodi-n-propylamine 621-64-7 8270E ND 300 110 ug/kg 1	Naphthalene	91-20-3	8270E	75		62			1
3-N.troaniline 99-09-2 8270E ND S 620 230 ug/kg 1 4-Nitroaniline 100-01-6 8270E ND S 620 230 ug/kg 1 Nitrobenzene 98-95-3 8270E ND S 300 110 ug/kg 1 2-Nitrophenol 86-75-8 8270E ND S 620 230 ug/kg 1 4-Nitrophenol 100-02-7 8270E ND S 1500 570 ug/kg 1 N-Nitrosodi-n-propylamine 621-64-7 8270E ND 300 110 ug/kg 1 N-Nitrosodiphenylamine (Diphenylamine) 88-30-6 8270E ND 300 110 ug/kg 1	2-NitroanIllne	88-74-4	8270F	ND	s	620		-	
4-Nitropaniline 100-01-6 8270E ND S 620 230 ug/kg 1 Nitropenzene 98-96-3 8270E ND S 300 110 ug/kg 1 2-Nitrophenol 88-76-5 8270E ND S 620 23D ug/kg 1 4-Nitrophenol 100-02-7 8270E ND S 1500 57D ug/kg 1 N-Nitrosodi-n-propylamlne 621-84-7 8270E ND 300 110 ug/kg 1 N-Nitrosodi-n-propylamlne 88-90-6 8270E ND 300 110 ug/kg 1	3-N.troanilline	99-09-2	8270E	ND	s	620		-	
Nitrobenzene 98-96-3 8270E ND 300 110 ug/kg 1 2-Nitrophenol 88-78-8 8270E ND 9 620 230 ug/kg 1 4-Nitrophenol 100-02-7 8270E ND 9 1500 570 ug/kg 1 N-Nitrosodi-n-propylamine 621-84-7 8270E ND 300 110 ug/kg 1 N-Nitrosodiphenylamine (Diphenylamine) 88-90-6 8270E ND 300 110 ug/kg 1	4-Nitroaniline	100-01-6	8270E	ND	s	620			
2-Nitrophenol 88-78-8 8270E ND S 620 23D ug/kg 1 4-Nitrophenol 100-02-7 8270E ND S 150D 57D ug/kg 1 N-Nitrosodi-n-propylamlne 621-84-7 8270E ND 300 110 ug/kg 1 N-Nitrosodi-hearylamlne (Diphenylamine) 88-90-6 8270E ND 300 110 ug/kg 1	Nitrobenzene	98-96-3	8270E	ND		300			1
4-Nitrophenol 100-02-7 82705 ND 8 1500 570 ug/kg 1 N-Nitrosodi-npropylamine 621-64-7 82705 ND 300 110 ug/kg 1 N-Nitrosodi-phenylamine) 88-30-6 82705 ND 300 110 ug/kg 1	2-Nitrophenol	88-76-5		ND	S		_		
N-Nitrosodi-n-propylamine 621-64-7 8270E ND 300 110 ug/kg 1 N-Nitrosodiphenylamine 88-30-6 8270E ND 300 110 ug/kg 1	4-Nitrophenol	100-02-7	82705	ND	s				
N-Nitrosodiphenylamine (Diphenylamine) 88-30-6 8270E ND 300 110 ug/kg 1	N-Nitrosodi-n-propylamine	621-64-7							
Post-obligation of	N-Nitrosodiphonylamine (Diphonylamine)	88-90-6		ND					
1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Pentachlorophonol	87-86-5	8270E	ND	\$	1500	570	ug/kg	1

LOQ - Limit of Quantillation ND = Not delected all or above the DL.

H = Out of holding time

B = Retected in the mathad thank N ≅ Recovery is but of criticia. Wie Roported on wet weight basis.

© = Quantifiction of compound exceeded the calibration range | DL = Gelector Limit P = fine RPD between two GC columns exceeds 40%.

Jin Eschiated result \times LOQ and \geq DL

Q = Surrogate failure L = LCS/LCSD fallure 8 = M8/M3D failure

Description: B-1 (2)

Date Sampled:05/07/2021 1430

Date Racelvad: 05/10/2021

Laboratory ID: WE10034-001 Matrix: Solid

% Solids: 85,4 05/11/2021 0008

Semivolatile Organic Compounds by GC/MS

Run Prep Method 1 3646	Analytical Method 8270E		2021 1839 STM			048 91939			
Parameter		ÇAS Number	Analytical Method	Result	Q	LOQ	DĹ	Units	Run
Phenanthrene		85-01-8	3270E	190	8	62	16	ugikg	1
Pheno!		108-95-2	8270E	ND		300	110	ug/kg	1
Pyrene		129-00-0	8270E	210	S	62	11	ug/kg	1
2,4,5-1'richlorophenol		95-95-4	8270E	N∵⊃	\$	300	110	ug/kg	1
2,4,6-Trichlorophenol		88-06-2	8270E	ND		300	110	ug/kg	1

Surrogate	Run 1 A Q % Recovery	Acceptance Limits		_	
2-Fluorobl phe nyl	83	33-102			
2-Fluorophenol	67	35-115			
Nitrobenzene-d5	80	22-109			
Phenol-d5	66	33-122			
Terphenyl-d14	92	41-120			
2,4,8-Tribro-rephenol	65	30-117			

ICP-MS

				101 1110		
Run	Prep Method	Analytical Method		Analysis Date Analyst		Batch
1	3050B	6020A	1	05/14/2021 1232 BNW	06/14/2021 0404	92127
1	7471B	7471R	1	06/13/2021 1808 CMS2	05/12/2021 1545	92064
2	3050B	6020B	10	05/14/2021 1121 BNW	05/14/2021 0404	92127

Parameter	CAS Number	Analytical Method	Rosult	a	LOQ	DL	Ųn <u>i</u> ts	Run
Aluminum	7429-90-5	6020B	43000	8	98	25	mg/kg	2
Antimony	7440-36-0	6020B	ND	S	0.49	0.20	mg/kg	1
Arsenio	7440-38-2	6020B	1.5		0.49	0.20	mg/kg	1
Barium	7440-39-3	6020B	160	8	1.2	0.30	mg/kg	1
Beryllium	7440-41-7	6020B	0.37	\$	0.098	0.033	mg/kg	1
Cadmium	7440-43-9	6020日	0.078	J	0.13	0.025	mg/kg	1
Calcium	7440-70-2	8020B	820	S	98	29	mg/kg	1
Chromium	7440-47-3	8020B	3 7	В	1.2	0.54	mg/kg	1
Cobalt	7440-48-4	6020B	11		1.2	0.29	mg/kg	1
Copper	7440-50-8	6020B	26		1.2	0.32	m g/k g	1
Iron	7439-89-6	6020B	41000	\$	130	25	mg/kg	2
Lead	7429-92-1	8020B	22		0.25	0.067	mg/kg	1
Magnesium	7439-95-4	6020B	2100	S	98	25	mg/kg	1
Manganese	7439-96-5	6020B	390	S	1,2	0.38	mg/kg	1
Mercury	7439-97-6	7471 B	0.028	J	0.091	0.022	mg/kg	1
Nickel	7440-02-0	6020B	14		1.2	0.29	mg/kg	1
Potassium	7440-09-7	6020B	2700	\$	88	25	mg/kg	1
Salenium	7782-49-2	6020B	0.51	J	1,2	0.47	mg/kg	1

LOQ ≃ Limit of Quentitation	D = Selected in the method blank	E = Quantitation of compound extended the calibration lange.	DL = Detection Limit	Q = Rumogale (ai ura
NO = Not defected all or above the DL	N = Rappyony is out of criteria.	P = The RPD antwices two GC columns accoons 40%	J ≈ Ealimated result < ! ΩQ and ≥ DL	L = LOS/LOSD fallure
B = Out of holding lims	Wie Reported on wat woight basis			S = MS/MSO fallura

Description: B-1 (2)

Date Sampled:05/07/2021 1430

Date Recalved: 05/10/2021

Laboratory ID:WE10034-001

Malrix; Solid

% Solids: 85.4 05/11/2021 0008

ICP-MS

				101-1813		
Run	Prop Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date Batch	
1	3050B	6020B	1	05/14/2021 1232 BNW	05/14/2021 0404 92127	
1	7471B	7 47 1B	1	06/13/2021 1608 CM52	05/12/2021 1545 92064	
2	3050B	6020B	10	05/14/2021 1121 BNW	05/14/2021 0404 92127	

Parameter	CAS Number	Analytical Method	Result (LOQ	DL	Units	Run
Silver	7440-22-4	60208	ND	0.25	0.059	mg/kg	1
Sodlum	7440-23-5	602 0 B	ND	98	36	rng/kg	1
Thallium	7440-28-0	6020B	0.24	0.12	0.029	mg/kg	1
Vanadium	7440 - 62-2	6020B	63 8	3 1.2	0.25	mg/kg	1
Zinc	7440-66-6	6020B	54	2.5	0.49	mg/kg	1

W = Reported on wat waigh) basis

Q = Surrogate failure L = LCS/LCSD failure $S=MSMSD \ \text{fatture}$

 $[\]Xi$ = Quantitation of compound expected the callb. Ellen range – DL = Date: list Limit Pin The RPD between two GC columns exceeds 40%

 $J \in \mathsf{Enlimated result} \subseteq \mathsf{LOQ} \ \mathsf{and} \ge \mathsf{QL}$

Description: **B-2** (3.5)

Date Sampled:05/07/2021 1440

Date Received: 05/10/2021

Laboratory ID: WE10034-002 Matrix: Solid

% Spiids; 83.6 05/11/2021 0008

Volatile Organic Compounds by GC/MS

National	Run Prop Method A 2 6035	malytical Method 8260D	Dilution 1		yais Date Analyst /2021 1720 JM1	Ртер	Date	Batch 92987	Sample Wt.(g) 4.84		
Reference	Parameter	•		-		Result	a	LOQ	DL	Units	Rur
Sign model chiloromethanne 75-27-4 8280D ND 6.2 2.5 Ug/Ng promoform 75-25-2 8280D ND 6.2 2.5 Ug/Ng promoform 75-25-2 8280D ND 6.2 3.7 Ug/Ng promoform 74-83-9 8280D ND 6.2 3.7 Ug/Ng park park park park park park park park	Acetone		67-	84-1	8260D	89	L	25	9.8	ug/kg	2
Seminarion Sem	Benzene		71-	43-2	8260D	ЦN		6.2	2.5	ug/kg	2
Second S	Bromodichioromethane		75-	27-4	8260D	ND		6.2	2.5	ug/kg	2
Part	Bromoform		75-	25-2	8260D	۸D		6.2	2.5	ug/kg	2
Territor of identified Territor of identif	Bromomethane (Methyl bromide)		74-	83- 9	8260D	ND		6.2	3.7	ug/kg	2
Carrion letrachloride	2-Butanone (MEK)		78-	93-3	8260D	12	1	25		ug/kg	2
Dichlorosthane	Carbon disulfide		75-	15-0	8260D	5.6	J	6.2	2.5	ug/kg	2
Chlorobenzene	Carbon tetrachloride		56-	23-5	8260D	ND		6.2	2.5	ug/kg	2
Shikorotamin	Chlorobenzane		108-	90-7	8260D	ND		6.2	2.5	ug/kg	2
Shlorometiane (Melhyl chlorido) 74-87-3 8260D ND 6.2 3.7 ug/kg	Chloroethane		75-	00-3	8260D	ND		6.2	2.5	ug/kg	2
10-82-7	Chloroform		67-	66-3	8280D	CN		6.2	2.5	ug/kg	2
10-82-7 9881D ND 6.2 2.5 1988 2.2-10 1984 2.	Chlorometriane (Methylichlorido)		74-	87-3	8280D	ND		6.2	3.7	ug/kg	2
2-Dibromo-3-chlorupropana (DBCP) 98-12-8 8280D ND 6.2 2.5 ug/kg	·		110-	82-7	8260D	ND		6.2	2.5	ug/kg	2
124-48-1 828CD ND 6.2 2.5 Ug/kg 1,2-Dichloromethane (ECB) 106-93-4 828CD ND 6.2 2.5 Ug/kg 1,2-Dichlorobenzene 95-50-1 826CD ND 6.2 2.5 Ug/kg 1,2-Dichlorobenzene 95-50-1 826CD ND 6.2 2.5 Ug/kg 1,4-Dichlorobenzene 106-46-7 826CD ND 6.2 2.5 Ug/kg 1,4-Dichlorodifluoromethane 75-71-8 826CD ND 6.2 2.5 Ug/kg 1,4-Dichlorodifluoromethane 75-71-8 826CD ND 6.2 2.5 Ug/kg 1,4-Dichlorodifluoromethane 107-06-2 326CD ND 6.2 2.5 Ug/kg 1,4-Dichlorodifluoromethane 107-06-2 326CD ND 6.2 2.5 Ug/kg 1,4-Dichlorodifluoromethane 75-34-3 826CD ND 6.2 2.5 Ug/kg 1,4-Dichlorodifluoromethane 75-35-4 826CD ND 6.2 2.5 Ug/kg 1,4-Dichlorodifluoromethane 75-35-4 826CD ND 6.2 2.5 Ug/kg 1,4-Dichlorodifluoromethane 136-59-2 826CD ND 6.2 2.5 Ug/kg 1,2-Dichlorodifluoromethane 136-59-2 826CD ND 6.2 2.5 Ug/kg 1,2-Dichlorodifluoromethane 136-80-5 826CD ND 6.2 2.5 Ug/kg 1,2-Dichloropropene 10061-01-5 826CD ND 6.2 2.5 Ug/kg 1,3-Dichloropropene 10061-01-5 826CD ND 6.2 2.5 Ug/kg 1,3-Dichloropropene 10061-01-5 826CD ND 6.2 2.5 Ug/kg 1,3-Dichloropropene 10061-01-6 826CD ND 6.2 2.5 Ug/kg 1,3-Dichloropropene 10061-01-6 826CD ND 6.2 2.5 Ug/kg 1,3-Dichloropropene 10061-01-6 826CD ND 6.2 2.5 Ug/kg 2-Hexanone 88-8-8 826CD ND 6.2 2.5 Ug/kg 2-Hexanone 88-8-8 826CD ND 6.2 2.5 Ug/kg 4-Methyl exitate 79-20-9 826CD ND 6.2 2.5 Ug/kg 4-Methyl exitate 79-20-9 826CD ND 6.2 2.5 Ug/kg 4-Methyl exitate 79-34-5 826CD ND 6.2 2	•	')	98-	12-8	8280D	ND		6.2	2.5	ug/kg	2
1,2-Dichlorobenzana	Dibromochloromothane		124-	48-1	828CD	ND		6.2	2.5	ug/kg	3
1,2-Dichlorobenzena 95-50-1 8260C ND 6.2 2.5 Ug/kg 1,3-Dichlorobenzena 166-48-7 8260C ND 6.2 2.5 Ug/kg 1,4-Dichlorobenzena 166-48-7 8260C ND 6.2 2.5 Ug/kg 1,4-Dichlorobenzena 166-48-7 8260C ND 6.2 2.5 Ug/kg 1,4-Dichlorobenzena 75-71-8 6260C ND 6.2 2.5 Ug/kg 1,1-Dichlorobenzena 75-34-3 6260C ND 6.2 2.5 Ug/kg 1,2-Dichlorobenzena 107-08-2 8260C ND 6.2 2.5 Ug/kg 1,2-Dichlorobenzena 107-08-2 8260C ND 6.2 2.5 Ug/kg 1,1-Dichlorobenzena 158-59-2 8260C ND 6.2 2.5 Ug/kg 1,1-Dichlorobenzena 158-59-2 8260C ND 6.2 2.5 Ug/kg 1,2-Dichlorobenzena 158-59-2 8260C ND 6.2 2.5 Ug/kg 1,2-Dichloropenzena 158-59-2 8260C ND 6.2 2.5 Ug/kg 1,2-Dichloropenzena 158-59-2 8260C ND 6.2 2.5 Ug/kg 1,3-Dichloropenzena 10061-01-5 8260C ND 6.2 2.5 Ug/kg 1,4-Dichloropenzena 10061-01-5 8260C ND 6.2 2.5 Ug/kg 1,4-Dichloropenzena 10061-01-5 8260C ND 6.2 2.5 Ug/kg 1,4-Dichloropenzena 100-41-4 8260C ND 6.2 2.5 Ug/kg 1,4-Dichloropenzena 108-10-4 8260C ND 6.2 2.5 Ug/kg 1,4-Dichloropenzena 100-41-6 6260C ND 6.2	1,2-Dibromoethane (EDB)		106-	93-4	8280D	ND		6.2	2.5	ug/kg	2
1,3-Dichlorobenzana 541-73-1 8260D ND 6.2 2.5 Ug/kg 1,4-Dichlorobenzana 166-46-7 8260D ND 6.2 2.5 Ug/kg Dichlorodifluoromethana 75-71-8 6260D ND 6.2 3.7 Ug/kg 1,1-Dichlorodiflana 75-34-3 8260D ND 6.2 2.5 Ug/kg 1,2-Dichloroethana 107-06-2 8260D ND 6.2 2.5 Ug/kg 1,1-Dichloroethana 107-06-2 8260D ND 6.2 2.5 Ug/kg 1,1-Dichloroethana 156-59-2 8260D ND 6.2 2.5 Ug/kg 1,2-Dichloroethana 156-60-5 8260D ND 6.2 2.5 Ug/kg 1,2-Dichloropthana 78-97-5 8260D ND 6.2 2.5 Ug/kg 1,2-Dichloropthana 10061-01-5 8260D ND 6.2 2.5 Ug/kg 1,2-Dichloropthana 10061-01-5 8260D ND 6.2 2.5 Ug/kg 1,2-Dichloropthana 10061-01-5 8260D			95-	50-1	8260D	ND		6.2	2.5	ug/kg	2
1,1-0)chlorodifluoromethane	1,3-Dichlorobenzene		541-	73-1	8260D	ND		6.2	2.5	ug/kg	2
Dichlorodifluoromethane 75-71-8 8260D ND 6.2 3.7 Ug/kg 1,1-Dichloroethane 75-34-3 8260D ND 6.2 2.5 Ug/kg 1,2-Dichloroethane 107-06-2 8260D ND 6.2 2.5 Ug/kg 1,1-Dichloroethane 75-35-4 8260D ND 6.2 2.5 Ug/kg 1,1-Dichloroethane 158-59-2 8260D ND 6.2 2.5 Ug/kg 1,1-Dichloroethane 158-59-2 8260D ND 6.2 2.5 Ug/kg 1,2-Dichloroethane 158-59-5 8260D ND 6.2 2.5 Ug/kg 1,2-Dichloropropane 158-60-5 8260D ND 6.2 2.5 Ug/kg 1,2-Dichloropropane 10061-01-5 8260D ND 6.2 2.5 Ug/kg 1,2-Dichloropropane 10061-01-5 8260D ND 6.2 2.5 Ug/kg 1,3-Dichloropropane 10061-02-6 8260D ND 6.2 2.5 Ug/kg 1,3-Dichloropropane 10061-02-6 8260D ND 6.2 2.5 Ug/kg 1,3-Dichloropropane 10061-02-6 8260D ND 6.2 2.5 Ug/kg 1,3-Dichloropropane 10041-4 8260D ND 6.2 2.5 Ug/kg 1,3-Dichloropropane 10041-4 8260D ND 6.2 2.5 Ug/kg 1,4-Dichloropropane 10061-02-6 8260D ND 6.2 2.5 Ug/kg 2-Hexanone 591-78-6 8260D ND 6.2 2.5 Ug/kg 2-Hexanone 98-82-8 8260D ND 6.2 2.5 Ug/kg 4-Hetryl acetate 79-20-8 8260D ND 6.2 2.5 Ug/kg 4-Hetryl-2-pentananane 108-10-1 8260D ND 6.2 2.5 Ug/kg 4-Hetryl-2-pentananane 108-10-1 8260D ND 6.2 2.5 Ug/kg Metryl cyclohexane 108-87-7 8260D ND 6.2 2.5 Ug/kg Metryl cyclohexane 108-42-5 8260D ND 6.2 2.5 Ug/kg Metryl cyclohexane 100-42-5 8260D ND 6.2 2.5 Ug/kg	1,4-Dichlorobenzena		106-	46-7	8260D	ND		6.2	2.5	ug/kg	2
1,2-Dichloroethane 107-06-2 8260D ND 6.2 2.5 ug/kg cis-1,2-Dichloroethene 75-35-4 8260D ND 6.2 2.5 ug/kg cis-1,2-Dichloroethene 158-59-2 8260D ND 6.2 2.5 ug/kg cis-1,2-Dichloroethene 158-60-5 8260D ND 6.2 2.5 ug/kg cis-1,3-Dichloropropane 78-87-5 8260D ND 6.2 2.5 ug/kg cis-1,3-Dichloropropane 10061-01-5 8260D ND 6.2 2.5 ug/kg cis-1,3-Dichloropropene 10061-02-6 8260D ND 6.2 2.5 ug/kg cit-plenace 100-41-4 8260D ND 6.2 2.5 ug/kg depropylace 100-41-4 8260D ND 6.2 2.5 ug/kg wethyl acetate 100-41-4 8260D ND 6.2 2.5 ug/kg wethyl tertlary butyl other (MTBE) 1634-04-4 8260D ND 6.2 2.5 ug/kg wethyl tertlary butyl other (MTBE) 1634-04-4 8260D ND 6.2 2.5 ug/kg wethyl tertlary butyl other (MTBE) 1634-04-4 8260D ND 6.2 2.5 ug/kg wethyl tertlary butyl other (MTBE) 1634-04-4 8260D ND 6.2 2.5 ug/kg wethyl tertlary butyl other (MTBE) 1634-04-4 8260D ND 6.2 2.5 ug/kg wethyl tertlary butyl other (MTBE) 1634-04-4 8260D ND 6.2 2.5 ug/kg wethyl tertlary butyl other (MTBE) 1634-04-4 8260D ND 6.2 2.5 ug/kg wethyl tertlary butyl other (MTBE) 1634-04-4 8260D ND 6.2 2.5 ug/kg wethyl tertlary butyl other (MTBE) 1634-04-4 8260D ND 6.2 2.5 ug/kg Methylcre chloride 75-09-2 8260D ND 6.2 2.5 ug/kg Methylcre chloride 75-09-2 8260D ND 6.2 2.5 ug/kg Methylcre chloride 75-09-2 8260D ND 6.2 2.5 ug/kg Tatrachloroethane 79-34-5 8260D ND 6.2 2.5 ug/kg Tatrachloroethane	Dichlorodifluoromethane		75-	71-8	8260D	ND		6.2	3.7	ug/kg	2
1,2-Dichloroethane	1,1-Otchloroethane		75-	34-3	8260D	ND		6.2	2.5	ug/kg	2
1,1-Dichloroethene	·		107-	06-2	8260D	ND		6.2	2.5	ug/kg	2
158-60-5 8260D ND 6.2 2.5 ug/kg 1,2-Dichloropropane 78-87-5 8260D ND 6.2 2.5 ug/kg 1,2-Dichloropropane 10061-01-5 8260D ND 6.2 2.5 ug/kg 1,2-Dichloropropane 10061-01-5 8260D ND 6.2 2.5 ug/kg 1,3-Dichloropropane 10061-02-6 8260D ND 6.2 2.5 ug/kg 2-Hexanone 100-44-4 8260D ND 6.2 2.5 ug/kg 1,4-Methyl-acetate 79-20-9 8260D ND 6.2 2.5 ug/kg 1,4-Methyl-2-pantanone 108-10-1 8260D ND 6.2 2.5 ug/kg 1,4-Methyl-2-pantanone 108-8-7 8260D ND 6.2 2.5 ug/kg 1,4-Methyl-acetate 100-42-5 8260D ND 6.2 2.5 ug/kg 1,1-2-Tetrachloroethane 79-34-5 8260D ND 6.2 2.5 ug/kg 1,1-2-Tetrachloroethane 127-18-4 8260D ND 6.2 2.5 ug/kg	1,1-Dichlorgethene		75-	35-4	8260D	ND		6.2	2.5	ug/kg	2
Telephorographic Telephorogr	cia-1,2-Dichloroethene		158-	59-2	8260D	ND		6.2	2.5	ug/kg	2
10061-01-5 8260D ND 6.2 2.5 ug/kg	trans-1,2-Dichloroethene		150-	60- 5	8260D	CN		6.2	2.5	ug/kg	2
rans-1,3-Dichloropropene 10061-02-6 8260D ND 6.2 2.5 ug/kg Ethylbenzene 100-41-4 8260D ND 6.2 2.5 ug/kg 2-Hexanone 591-78-6 8280D ND 12 4.9 ug/kg 800-000 ND 6.2 2.5 ug/kg 90-000 ND 90-000 ND 6.2 2.5 ug/kg 90-000 ND 6.2 2.5 ug/kg 90-000 ND 6.2 2.5	1,2-Dichloropropane		7B-	87-5	8260D	ND		6.2	2.5	ug/kg	2
Ethylbenzene 100-41-4 8260D ND 6.2 2.5 ug/kg 2-Hexanone 591-78-6 8280D ND 12 4.9 ug/kg 80propyloenzone 98-62-8 8260D ND 6.2 2.5 ug/kg Wethyl acetate 79-20-9 8260D ND 6.2 2.5 ug/kg Wethyl tertlary butyl other (MTBE) 1634-04-4 8260D ND 6.2 2.5 ug/kg 4-Methyl-2-pentanone 108-10-1 8260D ND 12 4.9 ug/kg Methylcyclohexane 108-87-7 8260D ND 6.2 2.5 ug/kg Methylcyclohexane 108-87-7 8260D ND 6.2 2.5 ug/kg Methylcyclohexane 108-87-7 8260D ND 6.2 2.5 ug/kg Methylcyclohexane 100-42-5 8260D ND 6.2 2.5 ug/kg Methylcyclohexane 100-42-5 8260D ND 6.2 2.6 ug/kg 1,1,2,2-Tetrachloroethane 79-34-5 8260D ND 6.2 2.5 ug/kg Tatrachloroethane 127-18-4 8260D ND 6.2 2.5 ug/kg Tatrachloroethane	cis-1,3-Dichloropropene		10061-	01-5	8260D	ND		6.2	2.5	ug/kg	2
2-Hexanone 591-78-6 8280D ND 12 4.9 Ug/kg sepropyloenzone 98-62-8 8260D ND 6.2 2.5 Ug/kg Wethyl acetate 79-20-9 8260D ND 6.2 2.5 Ug/kg Wethyl tertlary butyl other (MTBE) 1634-04-4 8260D ND 6.2 2.5 Ug/kg 4-Methyl-2-pentanone 108-10-1 8260D ND 12 4.9 Ug/kg Methylcyclohexane 108-87-7 8260D ND 6.2 2.5 Ug/kg Methylcyclohexane 108-87-7 8260D ND 6.2 2.5 Ug/kg Methylcyclohexane 108-87-7 8260D ND 6.2 2.5 Ug/kg Methylcyclohexane 100-42-5 8260D ND 6.2 2.5 Ug/kg Styrene 100-42-5 8260D ND 6.2 2.6 Ug/kg 1,1,2,2-Tetrachloroethane 79-34-5 8260D ND 6.2 2.5 Ug/kg Tatrachloroethane 127-18-4 8260D ND 6.2 2.5 Ug/kg Tatrachloroethane	trans-1,3-Dichloropropene		10061-	02-8	8260D	ND		6.2	2.5	ug/kg	2
2-Hexanone 591-78-8 8280D ND 12 4.9 ug/kg sopropyloenzone 98-82-8 8260D ND 6.2 2.5 ug/kg wethyl acetate 79-20-9 8260D ND 6.2 2.5 ug/kg Methyl tertlery botyl other (MTBE) 1634-04-4 8260D ND 6.2 2.5 ug/kg 4-Methyl-2-pentanone 108-10-1 8260D ND 12 4.9 ug/kg Methylcyclohexane 108-87-7 8260D ND 12 4.9 ug/kg Methylcyclohexane 108-87-7 8260D ND 6.2 2.5 ug/kg Methylcyclohexane 108-87-8 8260D ND 6.2 2.5 ug/kg Styrene 100-42-6 8260D ND 6.2 2.6 ug/kg Styrene 100-42-6 8260D ND 6.2 2.6 ug/kg 1,1,2,2-Tetrachloroethane 79-34-5 8260D ND 6.2 2.5 ug/kg Tetrachloroethane 127-18-4 8260D ND 6.2 2.5 ug/kg Tetrachloroethane	Ethylbenzene		100-	41-4	8260D	ND		6.2	2.5	ug/kg	2
Methyl acetate 79-20-9 8260D ND 6.2 2.5 ug/kg Methyl tertlery botyl other (MTBE) 1634-04-4 8260D ND 6.2 2.5 ug/kg 4-Methyl-2-pentanono 188-10-1 8260D ND 12 4.9 ug/kg Methylcyclohexano 108-87-7 8260D ND 6.2 2.5 ug/kg Methylcre chloride 75-09-2 8260D ND 6.2 2.5 ug/kg Styrene 100-42-6 8260D ND 6.2 2.6 ug/kg 1,1,2,2-Tetrechloroethane 79-34-5 8260D ND 6.2 2.5 ug/kg Tetrachloroethene 127-18-4 8260D ND 6.2 2.5 ug/kg	2-Hexanone		591-	78-6	8280D	ND		12	4.9	ug/kg	2
Methyl tertlery butyl other (MT3E)	.eoprapylaenzone		98-	82-8	8260D	ND		€.2	2.5	ug/kg	2
4-Methyl-2-pertanone 108-10-1 8260D ND 12 4.9 Ug/kg Methylcyclohexane 108-87-7 8260D ND 6.2 2.5 Ug/kg Methylene chloride 75-09-2 8260D ND 6.2 2.5 Ug/kg Styrene 100-42-6 8260D ND 6.2 2.6 Ug/kg 1,1,2,2-Tetrachloroethane 79-34-5 8260D ND 6.2 2.5 Ug/kg Tetrachloroethane 127-18-4 8260D ND 6.2 2.5 Ug/kg	Methyl acetate		79-	20-9	8260D	ИD		6.2	2.5	ug/kg	5
Methylogolohexane	Methyl tertlary butyl other (MTBE)		1634-	04-4	8260D	NЮ		6.2	2.5	ug/kg	2
Methylogolohexane 108-87-7 8260D ND 6.2 2.5 ug/kg Methylerie chloride 75-09-2 8260D ND 6.2 2.5 ug/kg Styrene 100-42-5 6260D ND 6.2 2.6 ug/kg 1,1,2,2-Tetrachloroethane 79-34-5 8260D ND 6.2 2.5 ug/kg Tatrachloroethane 127-18-4 8260D ND 6.2 2.5 ug/kg	4-Methyl-2-pentanono		108-	10-1	8260D	NΩ		12	4.9	ug/kg	2
Methyler,e chloride 75-09-2 8260D ND 6.2 2.5 ug/kg Styrene 100-42-5 8260D ND 6.2 2.6 ug/kg 1,1,2,2-Tetrachloroethane 79-34-5 8260D ND 6.2 2.5 ug/kg Tetrachloroethane 127-18-4 8260D ND 6.2 2.5 ug/kg	Methyloyolohexana		108-	87-7	8260D	ND		6.2	2.5	ug/kg	2
Styrene 100-42-5 8260D ND 6.2 2.6 ug/kg 1,1,2,2-Tetrachloroethane 79-34-5 8260D ND 6.2 2.5 ug/kg Tetrachloroethane 127-18-4 8260D ND 6.2 2.5 ug/kg	Methylene chloride		75-	-09-2	8260D	ND		6.2	2.5	ug/kg	2
1,1,2,2-Tetrachloroethane 79-34-5 8260D ND 6.2 2.5 ug/kg Tetrachloroethene 127-18-4 8260D ND 6.2 2.5 ug/kg	Styrene		100-	42-5	8260D	ND		6.2	2.6	ug/kg	2
Tetrachloroethene 127-18-4 8260D ND 6.2 2.5 ug/kg	1,1,2,2-Tetrachloroethane		79-	34-5	8260D	ND		6.2	2.5		2
Taluone 108-88-3 82600 ND 6.2 2.5 ug/kg	Tetrachloroethene		127-	18-4	8260D	ND		6.2	2.5	ug/kg	2
	Taluone		108-	88-3	8260 0	ND		6.2	2.5	ug/kg	2

LOQ = Limit of Que	r:tation
ND = Not deceptor's	at or above the D

 $B=Dimeded in the method blank \qquad E=Quantifellar of compound excepted the distinction range \quad [F], = Direction Lline.$

Q = Surragalo fai ura

ND = Not detected at or above the DL.H = Out o' holding time

 $N \cong \mathsf{Recovery}$ is put of a flatter Will Reparted on wet weight basis:

ite (he RPD belween two GC columns exceeds 40%)

 $J \in \mathsf{Bat} \, \mathsf{meted} \, \mathsf{result} \leq \mathsf{LOC} \, \mathsf{and} \geq \mathsf{DL}$

 $E \simeq CG37CGS(0) fallums$ S = MS/MSD fature

Description: B-2 (3.5)

Date Sampled:05/07/2021 1440

Date Received: 05/10/2021

Trichloro (luoromethane

Vinyl chloride

Xylenes (total)

Laboratory ID: WE10034-002

Matrix: Solid

% Solids: 83.6 05/11/2021 0008

2.5

2.5

3.7

4.9

2

2

2

2

ug/kg

ug/kg

ug/kg

ug/kg

Volatile Organic Compounds by GC/MS

Run Prep Method 2 5035	Analytical Method 8260D	Dilution		ysis Date Analyst 2021 1720 JM	Prep Date	Batch 92987	Sample Wt.(g) 4.84	•	
Parameter			CAS nber	Analytical Method	Rosult Q	LOQ	DL	Units	Run
1,1.2-Trichloro-1,2,2-Trifluo/oethar	ne	76-	13-1	823CD	ND	6.2	2.5	ug/kg	2
1,2.4-Trichlorobenzena		120-	82-1	82 6 0D	ND	6.2	2,5	ug/kg	2
1,1.1-Trichloroethane		/1-	55-წ	8260D	ND	6.2	2.5	ug/kg	2
1,1.2-Trich/broethene		79-	00-5	8260D	ND	6.2	2.5	ug/kg	2
Trichloroethene		79-	01-6	82600	ND	6.2	2.5	ua/ka	2

82600

8260D

8260D

75-69-4

75-01-4

1330-20-7

ND

ND

ND

6.2

6.2

12

Surrogato	Q	Run 2 % Recovery	Acceptance Limits
Bromofluorobonzene		99	47-138
1,2-Dichloroethane-d4		95	53-142
Tolugne-d8		105	68-124

Semivolatile Organic Compounds by GC/MS

Run	Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date	Batch	
1	3546	8270E	10	05/23/2021 1903 STM	05/11/2021 2048	91939	

Paramoter	CAS Number	Analytical Method	Result Q	LOQ	DL .	Units	Run
Acenaphthono	83-32-9	8270E	ND	31	9.7	ug/kg	1
Acenaphthyleno	238-96-8	8270⊡	ND	31	11	ug/kg	1
Acetophenone	98- 88-2	8270∃	ND	150	58	ug/kg	1
Anthracene	120-12-7	8270E	ND	31	5.9	tig/kg	1
Atrazine	1912-24-9	8270E	ND	150	58	ug/kg	1
Benzaldehyde	100-52-7	8270E	ND	15D	58	ug/kg	1
Benzo(a)anthracono	56-55-3	8270E	ND	31	6,9	ug/kg	1
Benzo(a)pyrdno	50-32-8	827 0 E	ND	31	7.7	ug/kg	1
Benzo(b)fluoranther:e	205-99-2	8270E	ND	31	5.8	ug/kg	1
Benzo(g,h,l)perylena	191-24-2	8270E	ND	31	7.6	ug/kg	1
Scnzo(k)fluoranthene	207-08-9	8270E	ND	31	5.6	ug/kg	1
1.11-3lphenyl	92-52-4	8270E	ND	150	58	ug/kg	1
4-Bromophenyl phenyl ether	101-55-3	8270E	ND	150	58	ug/kg	9
Butyl benzyl phthelate	85-68-7	8270E	ND	150	58	ug/kg	1
Caprolectam	105 -6 0-2	8270E	ND	150	58	ug/kg	1
Carbazole	86-74-8	8270F	ND	150	68	ug/kg	1
bis (2-Chloro-1-methylethyl) ethan	108-60-1	8270E	ND	150 ~	68	Jg/kg	1
4-Chiora-3-methyl phenol	59-50-7	8270E	ND	150	58	jug/kg	1
4-Chloroaniline	106-47-8	8270E	ND	150	58	ug/kg	1
bis(2-Chloroethoxy)methane	111-91 - 1	8270E	ND	150	58	ug/kg	1

	·			
LOQ = Umit of Quantitation	3 - DateCtab in the method blank	F. = Quantitation of compound exceeded the calibration range.	DL = Delection Limit	Q = Surregate fallure
ND → Not detected at on above the DL	N = Recovery is out of criteria.	P = The RPD unlycen two GC columns expaeds 40%	J = Ssilmated result < COO and > DL	I. = 1.CS/LCSD (alure
H = Out of Politing time	Wie Reported on well weight basis		_	S = MS/MSD failure

Description: B-2 (3.5)

Date Sampled:05/07/2021 1440

Date Received: 05/10/2021

Laboratory !D: WE10034-002

Matrix: Solld

% Salids: 83.6 05/11/2021 0008

Semivolatile Organic Compounds by GC/MS

 Run
 Prep Method
 Analytical Method
 Dilution
 Analysis Date
 Analyst
 Prep Date
 Batch

 1
 3548
 8270E
 10
 05/23/2021 1903
 STM.
 05/11/2021 2048 91939

Parameter	GAS Number	Analytical Method	Result Q	LOG	DL	Units	Run
bis(2-Chloroethyl)ether	111-44-4	8270E	ND	150	58	ug/kg	1
2-Chloronaphthalene	91-58-7	8270E	ND	150	58	ug/kg	1
2-Chlorophenol	95-57-8	8270E	ND	150	58	ug/kg	1
4-Chlorophenyl phenyl ether	7005-72-3	8270E	ND	150	58	ug/kg	1
Chrysene	218-01-9	8270E	ND	31	5,2	ug/kg	1
Dibenzo(a.h)anthracene	53-78-3	8270€	ND	31	5.8	ug/kg	1
Dibonzofuran	132-64-9	8270E	ND	150	58	ug/kg	1
3,3'-Dichlorobenzidine	91-94-1	8270E	ND	150	58	ସମ୍ବ/ହିନ୍ତ	1
2,4-Dichlarophenol	120-83-2	827DE	ND	150	68	ug/kg	1
Diothylphthalate	84-68-2	8270F	ND	150	58	шg/kg	1
Dimothyl phthalate	131-11-3	8270F	ND	150	86	υ g /kg	1
2.4-Dimathylphenol	105-67-9	8270E	ND	150	50	ug/kg	1
DI-n-butyl phthalate	84-74-2	8270E	ND	150	58	ug/kg	1
4,6-Dinltro-2-methylphenol	534-52-1	8270E	ND	780	290	ug/kg	1
2.4-Dinitrophenol	51- 28- 5	8270E	NO L	780	290	ug/kg	1
2,4-Dinkrotoluene	121-14-2	8270∄	NO	310	120	ug/kg	1
2,6-Dinkrotoluene	806-20-2	8270E	ND	310	120	ug/kg	1
Di-n-octylphthalate	117-84-0	8270E	ND	150	58	ug/kg	1
bls(2-Ethylhexyl)phthalate	117-81-7	8270€	ND	780	290	ug/kg	1
Fluoranthone	206-44-0	8270E	ND	31	4.9	ug/kg	.1
Fluorono	86-73-7	827ÓE	ND	31	6.6	ug/kg	1
Hoxachlorobenzene	118-74-1	9270F	ND	150	58	ug/kg	1
Hexachlorobutadiene	87 - 68-3	827DE	ND	150	58	ug/kg	1
Hexachlorocyclopentadieno	77-47-4	8270E	ND	780	290	ug/kg	1
Hexachloroethane	87-72-1	8270E	ND	150	58	ug/kg	1
Indeno(1,2.3-c,d)pyrene	193-39-5	8270E	ND	31	12	u g /kg	1
Isophorone	78 -59- 1	8270E	ND	150	50	u g /kg	1
2-Methylnaphthalene	91-67-6	8270E	ND	91	12	ug/kg	1
2-Mothy.phenol	95-48-7	8270€	ND	150	58	ug/kg	1
3+4-Mathylphenol	108-44-5	8270E	ND	310	. 120	ug/kg	1
Naphthalere	91-20-3	8270E	ND	31	11	ug/kg	1
2-Nitroaniline	88-74-4	8270E	ND	310	120	ug/kg	1
3-Nitroaniline	99-09-2	8270E	ND	310	120	ug/kg	1
4-Nitroaniline	100-01-6	8270E	ND	310	120	ug/kg	1
Nitrobonzene	98-95-3	8270€	ND	150	58	ug/kg	1
2-Nitrophenal	88-75-5	8270€	מא	310	120	ug/kg	1
4-Nitrophanal	100-02-7	8270E	NO.	780	290	ug/kg	1
N-Nitrosadi-n-propylamine	B21-84-7	8270E	ИЭ	150	58	ug/kg	1
N-Nitrosodiphonylamine (Diphenylamine)	86-30-6	8270∃	NO	150	58	ug/kg	1
Pentachlorophonol	87-86-5	8270E	ND	780	290	ug/kg	1

_OQ = I [m]] of Quantitation
ND = Not detacted at the above the D

B = Dojecard in the method blank

E = Q ush titation of exemploural exceeded line as threaton range.

OL ~ Detection Limit

C = Surrogate fallure L = LCS/LCSD failure

 $ND \rightarrow Not detected at philosophic DL: H = Out of holding time$

N = Recovery is out of critoria
W = Reported on wet weight pasts

P = The RPD batween two SC columns exceeds 10% $\,$

J = Estimated result < LOD and > Dt.

S = M8/M8D fellure

Description: B-2 (3.5)

Date Sampled:05/07/2021 1440

Date Received: 05/10/2021

Laboratory ID: WE10034-002

Matrix: Solid

% Solids: 83.6 05/11/2021 0008

Semivolatile Organic Compounds by GC/MS

Run Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date	Batch
1 3546	8270E	10	06/20/2021 1903 STM	05/11/2021 2048	91939

Paramoter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Phenanthrono	85,-01-8	8270E	ND	31	B.4	ug/kg	1
Phenol	108-95-2	8270E	No	350	58	ug/kg	1
Pyrone	129-00-0	8270E	ND	31	5.8	ug/kg	1
2,4,5-Trichlorophenot	9 5-95-4	8270E	ND	160	58	ug/kg	1
2,4,6-Trichlorophenol	88-06-2	8270E	ND	150	58	ug/kg	1

Surrogate	Run 1 Acceptance Q % Recovery Limits
2-Fluoroblphonyl	63 33-102
2-Fluorophenol	53 35-115
Nirobenzene-d5	58 22-109
Phenol-d5	53 33-122
Terphenyl-d14	72 41-120
2.4.6-Tribramanherol	89 30 ₋ 117

ICP-MS

Run	Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date	Batch	
1	3050B	6020B		05/14/2021 1301 BNW	•	92127	
1	7471B	7471B	1	05/13/2021 1616 CMS2	05/12/2021 1545	92064	
2	3050B	60209	10	05/14/2021 1151 BNW	05/14/2021 0404	92127	

Parameter	CAS Number	Analytical Method	Result	Q	LOQ	DŁ	Units	Run
Aluminum	7429-90-5	6020B	40000		110	28	mg/kg	2
Antimony	7440-36-0	6020B	ND		0.56	0.22	mg/kg	1
Arsenic	7440-38-2	6020B	1.6		0.56	0.22	mg/kg	1
Barlum	7440-39-3	6020B	180		1.4	0.35	mg/kg	1
Beryllium	7440-41-7	60208	0.23		0.11	0.038	mg/kg	1
Gadmlum	7440-43-9.	6020B	ND		0.15	0.028	mg/kg	1
Calcium	7440-70-2	6020B	2000		110	34	mg/kg	1
Chromium	7440-47-3	6020B	41	В	1.4	0.62	mg/kg	1
Cobalt	7440-48-4	6020B	13		1.4	0.34	mg/kg	1
Copper	7440-50-8	6020B	27		1.4	0.37	mg/kg	1
Iron	7439-89-6	6020B	47000		150	23	m g/k g	2
Lead	7439-92-1	6020B	10		0.28	0.076	mg/kg	1
Magnesium	7439-95-4	6020B	5200		110	28	mg/kg	1
Manganeso	7439-9 6 -5	6020B	320		1.4	0.41	nig/kg	1
Moreury	7439-97-6	7471B	0.022	J	0.000	0.022	mg/kg	1
Nickel	7440-02-0	6020B	21		1.4	0.34	mg/kg	1
Potassium	7440-09-7	6020B	2300		110	28	mg/kg	1
Solenium	7782-49-2	6020B	0.79	J	1.4	0.53	mg/kg	1

Paco Analytical Services, LLC (formerly Sheety Environmental Services, Inc.)

106 Varriago Point Drive West Columbia, SC 29172 (803) 791-9730 Fex (803) 791-9111 www.pacelabs.com

Description: B-2 (3.5)

Date Sampled:05/07/2021 1440

Dato Received: 05/10/2021

Laboratory ID: WE10034-002

Matrix: Solid

% Solids: 83.6 05/11/2021 0008

ICP-MS

Run	Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date Batch	
1	3050B	602CB	1	06/14/2021 1301 BNW	05/14/2021 0404 92127	•
1	7471B	7471B	1	05/13/2021 1616 CMS2	05/12/2021 1545 92064	ļ
2	3050B	6020B	10	06/14/2021 1151 BNW	05/14/2021 0404 92127	,

Parameter	CAS Number	Analytical Method	Result	Q	LOQ	DL	Units	Run
Sliver	7440-22-4	6020FI	ND		0.28	0.067	mg/kg	1
Sodium	7440-23-5	6020B	76	J	110	41	mg/kg	1
Thallium	7440-28-0	602 0B	0.37		0.14	0.034	mg/kg	1
Vanadlum	7440-62-2	6020B	64		1.4	0.28	mg/kg	1
Zinc	7440-68-6	6020B	94		2.8	0,56	mg/kg	1

LOQ = Umil of Quantitation ND ~ Not detected at chabove the Du-

 ${\cal H}={\cal O}_{\rm eff}$ of holding lime

B = Detected in find microbia blank N = Recovery is out of criteris Wie Reported on webweight basis ∃ → Quantitation of compound exceeded the calibration range $P \approx 7 he$ RPD between two GC astumns expects 40%

DL = Detection Limit $J=\operatorname{Hodimeted}$ rosinfy $\leq LC\Omega$ and $\geq DL$ Q ¬ Surrogate fellure $\underline{t} = 1\,\text{GS/..GSD}$ failure a - MS/MSD failuro

Pace Analytical Services, LLC (formerly Shooly Environmental Services, Inc.)

106 Vantage Point Driva - West Columbia, SC 29172 (603) 791-9700 - Fax (803) 791-9111 - www.pacelabs.com

Description: B-3 (2)

Date Sampled:05/07/2021 1450

Dato Received: 05/10/2021

Laboratory ID: WE10034-003

Matrix: Solid

% Solids: 87.8 05/11/2021 0008

Volatile Organic Compounds by GC/MS

Run Prop Method 1 5036	Analytical Method 8260D	Dilution 1		ysis Date Analyst /2021 1233 JM1	Prep	Date	Batch 92636	Sample Wt.(g) 5.61		
Parameter			CAS 1ber	Analytical Method	Result	Q	LOQ	DL	Units	Run
Acetone		67-	84-1	8260D	ND	'	20	8.1	ug/kg	1
Berizeno		71-	43-2	826 0 D	ИD		5.1	2.0	ug/kg	1
Bromodichloromethane		75-3	27-4	8260D	ND		5.1	2.0	ug/kg	1
Bromoform		75-2	25-2	8280D	ND		5.1	2.0	ug/kg	1
Bromomethane (Methyl bromido)		74-6	33-9	8280D	ND		5.1	3.0	ug/kg	1
2-Butenone (MEK)		78-9	93-3	82800	ND		20	4.1	ug/kg	1
Carbon disulfide		75-1	15-0	8260 D	ND		5. f	2.0	ug/kg	1
Carbon tetrachlorido		56-3	23-5	8260D	ND	5	5.1	2.0	ug/kg	1
Chlorobenzeno		108-9	90-7	8260D	ND		5.1	2.0	ug/kg	1
Chlorocthano		75-4	10-3	8260D	ND		5.1	2.0	ug/kg	1
Chloroform		87-€	56-3	82 6 0D	ND		5.1	2.0	ug/kg	1
Chloromethane (Methyl chloride)		74-4	97-3	8260D	ND		5.1	3.0	ug/kg	1
Cyclohexane		110-8	32-7	8260D	ND	ŝ	5.1	2.0	ug/kg	1
1,2-Dibromo-3-chloropropane (DBC	P)	96-1	12-8	8260D	ND	-	5.1	2.0	ug/kg	1
Dibromochloromethane	•	124-4	18-1	8260D	ND		5.1	2.0	ug/kg	1
1,2-Dibromoethane (EDB)		106-9	93-4	8260D	ND		5.1	2.0	vg/kg	1
1,2-Dichlorobenzene		95-8	50-1	82600	ND		6.1	2.0	ug/kg	•
1,3-Dichlorobenzene		541-7	73-1	82600	ND		6.1	2.0	ugu/kg	1
1,4-Dichloropenzene		106-4	l 6- 7	8260D	ND		5.1	2.0	ug/kg	1
Dichlorodifluoromethana		75-7	71-8	\$260D	ND		6.1	3.0	υg/kg	1
1,1-Dichloroethane		75-0	34-3	8260D	CN		5.1	2.0	υg/kg	1
1,2-Dichloroethane		107-0		8260D	ND		5.1	2.0	ug/kg	1
1,1-Dichloroethene		75-3	35-4	8260D	ND	s	-5.1	2.0	ug/kg	1
dis-1,2-Dichloroethene		156-5	9-2	8260D	ND		5.1	2.0	ug/kg	1
trans-1,2-Dichlordetheno		156-6	80-6	8280D	ND		5.1	2.0	ug/kg	1
1.2-Dichloropropana		78-8	37-5	82800	ND		5.1	2.0	ug/kg	1
cis-1,3-Dichloropropana		10061-0	11-5	82800	ND		5.1	2.0	ug/kg	1
trans-1,3-Dichloropropene		10061-0	12-6	8280D	ND		5.1	2.0	ug/kg	1
Ethylbonzone		100-4	11-4	8260D	ND		5.1	2.0	ug/kg	1
2-Hexanone		591-7		8260D	ND		10	4.1	ug/kg	1
Isopropylbenzeno		98-8		8280D	ND	s	5.1	2.0	ug/kg	1
Methyl acetate		79-2	20-9	8260D	ND	s	5.1	2.0	ug/kg	1
Mothyl tortlary butyl ether (MTBE)		1634-0	14-4	8260D	ND		5.1	2.0	ug/kg	1
4-Methyl-2-pentanone		108-1	0-1	8260D	ND		10	4.1	ug/kg	1
Methy cyclohexene		108-6		8260D	ND	S	5.1	2.0	ug/kg	1
Mathylane chloride		75-0		8260D	ND		5.1	2.0	ug/kg	1
Styrene		100-4		8260D	ND		5.1	2.0 2.0	ug/kg	1
1,1,2,2-Tetrachloroethane		79-3		8260D	ND		5.1	2.0	ug/kg	1
Tetrachloroethene		127-1		8260D	ND	5	5.1	2.0	ug/kg ug/kg	1
Toluene		108-8		8260D	ND		5.1	2.0	ug/kg ug/kg	1

LOG = Limit of Quentitation

8 = Detector: in the migraph plank

E = Quantitation of compound exceeded topics, brahon range | Du = Detection Limit

Q = Surragate fallure L = LCS/LCSD failure

ND = Not detected at or above the DL H = Out of holding time.

N = Recovery is out of criteria. Wie Reported on well weight basis P = The RPD browson Iwo GC columns exceeds 40%

 $J = \mathsf{Est}$ mated result < 1,000 and $\geq \mathsf{DL}$

8 = M8/MSD failure

Pace Analytical Services, LLC (formerly Sheaty Environmental Services, Inc.)

108 Vordage Point Drivo - West Culumbia, SC 29172 (803) 791-9700 Fax (903) 791-9111 - www.pacelabs.com

Doscription: B-3 (2)

Date Sampled:05/07/2021 1450 Date Received: 05/10/2021 Laboratory ID; WE10034-003

Matrix: Solid

% Solida: 87.8 05/11/2021 0008

Volatile Organic Compounds by GC/MS

Run Prep Method 1 5035	Analytical Metho 82600		Analysis 05/18/202	Date Analyst 1 1233 JM1	Prop	Date	Batch 92636	Sample Wt.(g) 5.81		-
Parameter		Nu	CAS /	Analytical Method	Result	Q;	LOQ	bL	Units	Run
1,1,2-Trichloro-1 2,2-Trifluoroethan	9	76-	-13-1	8260D	ND	S	5.1	2.0	ug/kg	1
1,2,4-Trichicrobenzene		120-	-82-1	82600	CM	S	5.1	2.0	ug/kg	1
1.1,1-Trich croethane		71-	-55-6	82600	ND.	S	5.1	2.0	ug/kg	1
1.1,2-Trich croethane		79	-00-5	8260D	ND		5.1	2.0	ug/kg	1
Trichloroothene		79	-01-8	8260D	ND		5.1	2.0	ug/kg	1
Trichlorofluoromethane		75	-69-4	8260D	ND		5.1	2.G	ug/kg	1
Vinyl chloride		75	-01-4	8260D	ND		5. t	3.C	ug/kg	1
Xylenes (total)		1330	-20-7	8260D	ND		10	4.1	ug/kg	1
Surrogate	Q %	Run 1 Recovery	Acceptanc Limits	e						
Bramofluarobenzene		101	47-138							
1,2-Dichloroofhane-d4		93	53-142							
Talueno-d8		102	68-124							

Semivolatile Organic Compounds by GC/MS

Run Prop Method 1 3546	Analytical Method 8270E		nalysis Date Analyst 24/2021 18/6 STM	Prep Dato 05/11/2021 2	Batch 2048 91939			
Parameter		ÇAS Number	- 11	Rosult Q	Loa	DL	Units	Run
Acenaphthene		83-32-9	8270E	ND	0.E	0.93	ug/ks	1
Acenaphthylene		208-96-8	8270E	ND	3.0	1.1	ug/kg	1
Acetophenone		98-86-2	8270⊟	ND	15	5.8	ug/kg	1
Anthracens		120-12-7	8270E	NΩ	3.0 -	0.57	ug/kg	1
Atrazine		1912-24-9	8270E	ND	15	5.6	ug/kg	1
Benzeldelrydo		100-52-7	8270E	КN	15	5.6	ug/kg	1
Benzo(e)anthracene		56-55-3	8270E	CN	3.0	0.66	ug/kg	1
Benzo(a)pyrane		50-32-8	8270E	ND	3.0	0.74	.ig/kg	1
Benzo(b)fluoranthene		205-99-2	8270E	ND	3.0	0.58	ug/kg	1
Benzo(g,h,l)paryleno		1 9 1-24-2	827CE	ND	3.0	3.73	ug/kg	1
Benzo(k)fluoranthene		207-08-9	8270E	ND	3.0	0.54	ug/kg	1
1,1 -Biphenyl		92-5 2- 4	8270E	ND	15	5.6	u g /kg	1
4-Bromophenyl pheny ether		101-55-3	8270E	ND	15	5.6	ug/kg	I_{λ}
Butyl benzyl phthalate		85-68-7	8270E	ND	15	5.6	ug/kg	1
Caprolactam		105-60-2	8270E	ND	15	5.6	ug/kg	1
Carbazole		86-74-8	8270E	ND	15	5.6	ug/kg	1
bis (2-Chloro-1-methylethyl) ethe	r	108-60-1	8270E	ND	15	5.6	ug/kg	1
4-Chloro-3-mathyl phenol		59-50-7	8270⊡	ND	15	5.6	tig/kg	1
4-Chloroaniline		106-47-8	8270E	ND	15	5.6	ug/kg	1
bia(2-Chloroethoxy)methane		111-91-1	8270E	ND	15	5.6	ug/kg	1

LOC = Limit of Quantitation	B = Datected in the molhoid blank	E = Quantitation of compound exceeded the calibration range	[i! = Delication Limit	Q = Surregate failure
ND 4 No. detected at an above the DL	N ¬ Recovery is out of office a	P = The RPD between two CO columns exceeds 40%	$J = \text{Estimated result} = LQQ \text{ and } \geq DL$	L = LCS/LCSD failure
H = Out of holding time	W = Reported on wet weight easis			S = MS/MSD (alture

Description: B-3 (2)

Date Sampled:05/07/2021 1450

Date Received: 05/10/2021

Laboratory ID: WE10034-003

Matrix: Solld

% Solids: 87.8 05/11/2021 0008

Semivolatile Organic Compounds by GC/MS

Run Prep Method Analytical Method Dilution Analysis Date Analyst Prep Date 3546 8270E 05/24/2021 1846 STM 05/11/2021 2048 91939

Parameter	CAS Number	Analytical Method	Result	Q	LOQ	DL	Units	Run
his(2-Chloroethyl)ethor	111-44-4	8270E	ND		15	5.6	ug/kg	- 1
2-Chloroларhthalona	91-58-7	8270E	ND		15	5.8	ug/kg	1
2-Chlorophanal	95-57-B	8270E	ND		15	5.6	tig/kg	1
4-Chlorophenyl přienyl ether	7005-72-3	8270⊆	NΩ		15	5.6	ug/kg	1
Chrysene	218-01-9	8270E	ND		3.0	0.50	υg/kg	1
Dlbenzo(a,h)anthracene	53-70-3	8270E	ND		3.0	0.57	ug/kg	1
Diberizofuran	132-64-9	8270F.	ND		15	5.6	ug/kg	1
3,3'-Dichlorobenzidina	91-94-1	8270E	ND		15	5.6	ug/kg	1
2,4-9ichloraphenol	120-83-2	8270E	ND		15	5.6	ug/kg	1
Diethylphthalato	84-86-2	8270E	ND		15	5.6	ug/kg	1
Dimethyl phthalate	131-11-3	8270E	ND		15	8.3	ug/kg	1
2,4-Dimethylphenol	105-67-9	8270E	ND		15	5.6	ug/kg	- 4
Di-n-butyl phthalate	84-74-2	8270E	8.2	вЈ	15	5.6	ug/kg	1
4,8-Dinitro-2-methylphenol	534-52-1	8270E	ND	-	75	28	ug/kg	í
2,4-Dinltrophenol	51-28-5	8270E	ND	Ł	75	28	ug/kg	1
2,4-Dinitrotoluene	127-14-2	8270E	ND		30	11	ug/kg	1
2,6-Dinitrotoluene	606-20-2	8270E	ND		30	11	ug/kg	1
DI-n-octylonthalate	117-84-0	8270E	ND		16	5.6	ug/kg	1
bis(2-Ethylhexyl)phthalate	117-81-7	8270년	ND		75	28	ug/kg	1
Fluoranthene	206-44-0	82705	ND		3.0	0.47	ug/kg	1
Plucrene	86-73-7	8270E	ND		3.0	0.64	ug/kg	1
Hexachlorobenzene	118-74-1	8270E	ND		15	5.6	ug/kg	1
Hexachlorobutadiene	87-68-3	8270E	ND		15	5.6	ug/kg	1
Hexeoblorocyclopentadiene	77-47-4	8270E	ND		75	28	ug/kg	1
Hexachloroethane	67-72-1	8270E	ND		15	5.6	ug/kg	1
Indeno(1,2,3-c.d)pyrene	193-39-5	8270E	ND		3.0	1.1	ug/kg	1
Isophorone	78 - 59-1	82705	ND		15	5.6	ug/kg	1
2-Methylnaphthalone	91-57-6	8270E	2.3	J	3.0	1.1	ug/kg	1
2-Methylphenol	95-49-7	8270E	ND		15	5.6	ug/kg	1
3+4-Mothylphenol	106-44-5	8270E	CN		3C	11	ug/kg	1
Naphthalene	91-20-3	8270E	2.0	J	3.0	1.1	ug/kg	1
2-Nitroaniline	88-74-4	8270E	ND		30	11	ug/kg	1
3-Ntroaniline	99-09-2	8270E	ND		30	11	ug/kg	1
4-Nitroaniling	100-01-6	8270E	ND		30	11	ug/kg	1
Mitrobanzone	98-95-3	8270E	ND		15	5.6	ug/kg	1
2-N'trophenol	86-75- 5	8270⊡	ND		30	11	ug/kg	1
4-Nitrophenol	100-92-7	8270E	ND		75	28	ug/kg	1
N-Nitrasodi-n-propylamine	821-64-7	8270E	ND		15	5.B	ug/kg	1
N-Nitrosodiphenylamine (Diphenylamine)	86-30-6	8270E	ND		15	5.6	ug/kg	1
Pentachlorophenoi	87-86-5	8270E	ND		75	28	ug/kg	1

LOQ = Limit of Quantitation ND = Not catacled at or spoke the DL.

 $H = \Omega_{00}$ of the diag time

B = Detected in the method blank N = Recovery is but of criteria Wi≃ Reported on Wet weight casis

E = Quantitation of compound exception the callpration range — DL = Detaction Limit ${\rm P}$ = The RPD holymon two GC columns excesses 40%

Jin Estimated result < 1,00, and > 0L.

Q = Sutragate /allure L = LCS/LCSD failure S = M&/MSD fallure

Pane Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

106 Vantage Poln: Drive - Wost Columbia, SC 28172 (803) 791-9700 | Fax (503) 791-9111 | www.pacelabs.com

Description: B-3 (2)

Date Sampled:05/07/2021 1450

Date Received: 05/10/2021

Leboratory ID:WE10034-003

Matrix: Solld

% Solids: 87.8 05/11/2021 0008

Semivolatile	Organic	Compounds	by GC/MS

Run Prep Method 1 3546	Analytical Method 8270E	Dilution 1	•	s Date Analyst 21 1846 STM	Prep I 05/11/20	Date 021 2046	Batch 91939			
Parametor		Nun	CAS nber	Analytical Method	Result	a	LOQ	DL	Units	Run
Phonanthrone		85-0	01-8	8270E	ND	- "	3.0	0.80	ug/kg	1
Phanol		108-9	95-2	8270E	ND		15	5.8	ug/kg	1
Pyrane		129-0	00-0	8270E	ND		3.0	0.56	ug/kg	1
2,4,5-Trichlorophenol		95-9	95-4	8270E	ND		15	5.8	ug/k g	1
2,4,6-Trichloraphenol		88-0	06-2	8270E	ND		15	5.8	ug/kg	1
Surrogate		Run 1 /	Acceptan Limits							
2-Figorobiphenyt		70	33-102	2		·· -				
2-F-uorophenol		67	35-115	5						
Nitrobanzene-dő		68	22-109	1						
Phenol-d5		73	33-122	?						
Terphenyl-d14		82	41-125)						
2,4,6-Triorgraphenol		78	30-117	,						
	•		ICF	P-MS			.			
Run Prop Mothod	Analytical Method	Dilution	Analysi	s Date Analyst	Prep		Batch			
1 3050B	3070B	1	05/14/20	21 1306 BNW		021 0404				
1 7471B	7471B	. 1	05/13/20	21 1619 CMS2		021 1645				
2 3050B	3020B	10	05/14/20	21 1156 BNW	05/14/2	021 0404	4 92127			

Parameter	CAS Number	Analytical Method	Result	a	LOQ	DL	Unite	Run
Aluminum	7429-90-5	6020B	34000		100	26	mg/kg	2
Antimony	7440-36-0	8020B	ND		0.52	0.21	mg/kg	1
Arsenic	7440-38-2	6020B	2.8		0.52	0.21	mg/kg	1
Barium	7440-39-3	6020B	150		1.3	0.32	mg/kg	1
Beryllium	7440-41-7	6020B	0.18		0.10	0.035	mg/kg	1
Cadmium	7440-43-9	6020B	0.058	J	0.13	0.028	mg/kg	1
Calcium	7440-70-2	6020B	230		100	31	mg/kg	1
Chromium	7440-47-3	6020B	30	В	1.3	0.57	mg/kg	1
Cobalt	7440-48-4	6020B	18		1.3	0.31	mg/kg	1
Copper	7440-50-8	6020B	29		1.3	0.34	mg/kg	1
Iron	7439-89-6	6020B	47000		130	26	mg/kg	2
Lead	7439-92-1	6020B	13		0.26	0.070	mg/kg	1
Magnesium	7439-95-4	6020B	4300		100	26	mg/kg	1
Manganese	7439-96-5	6020B	1000		13	3.7	mg/kg	,2
Morcury	7439-97-6	7471B	0,053	J	0.090	0.022	mg/kg	1
Nickel	7440-02-0	60209	26		1.3	0.31	mg/kg	1
Potassium	7440-09-7	60208	4800		100	26	mg/kg	1
Scienium	7782-49-2	6020B	1.2	J	1.3	0.49	mg/kg	1

LOQ ≃ Limit of Quantitation	Din Detected in the method plank	R = Quantilation of compound exceeded the calibration range	D'L ~ Delection Limit	© = Surrogate fallure
NB ≂ Not detected at phabave the Du	N = Recovery is out of prefer to	Pie (the RPD between two GC columns exceeds 40%	$J = E_{B} heather test t < LOG and \geq DT$	i, - LOS/COSD fa ura
H = Qut of bolding time	W - Reported on wet weight basis			S = M8/M8D failm

Face Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

108 Verilago Point Drive - West Columbia - SC 29172 (803) 791-9700 - Fax (803) 791-9111 - www.pacelabs.com

Description: B-3 (2)

Date Sampled:05/07/2021 1450

Date Received: 05/10/2021

Laboratory ID: WE10034-003

Matrix: Solid

% Solida: 87.8 05/11/2021 0008

ICP-MS

				101 1110		
Run	Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date	Batch
1	3050B	6020B	1	05/14/2021 1306 BNW	05/14/2021 040	4 92127
1	7471B	7471B	1	05/13/2021 1819 CMS2	05/12/20 2 1 154	5 92084
2	3050B	6020B	10	05/14/2021 1158 BNW	05/14/2021 040	4 92127

Parameter	_	CAS Number	Analytical Method	Rosult	Q	LOQ	DL	Units	Run
Şiiver		7440-22-4	6020B	0.090	J	0.26	0.062	mg/kg	1
Sodium		7440-23-5	6020B	46	J	100	38	mg/kg	1
Thallium		7440-28-0	6020B	0.51		0.13	0.031	mg/kg	1
Vanadium		7440-62-2	6020B	53		1.3	0.26	mg/kg	1
Zinc		7440-66-6	6020B	110		2.6	0.52	mg/kg	1

O = Surregain fa une E = 1,08/L080 fallure â = MS/M80 fa

Paco Analytical Services, LLC (formerly Snealy Environmental Services, inc.)

108 Vantago Puint Drive - West Columbia, SC 29172 (803) 791-9700 - Pax (803) 791-9111 - www.papelaba.com

Description: B-4 (5)

Date Sampled:05/07/2021 1500 Date Received:05/10/2021 Laboratory ID: WE10034-004

Mal/lx: Solid

% Solids: 85.4 05/11/2021 0008

Volatile Organic Compounds by GC/MS

Run Prep Method Analyt 1 5035	ical Method Dilution 8260D 1		ysis Dato Analyst /2021 1258 JM1	Þrар	Date	Batch 92636	Sample Wt.(g) 3.46		
Parameter	Nu	CAS mber	Analytical Method	Result	 ۵	LOQ	DL	Units	Run
Acetone	67	-64-1	\$260D	ND		34	14	ug/kg	1
Велгеле	71	-43-2	#260D	ND		8.6	3.4	ug/kg	1
Bromodichloromethane	78	-27-4	#260D	ND		8.5	3.4	ug/kg	1
Bramoform	75	- 2 5-2	8260D	ND		8.6	3.4	ug/kg	1
Bromomethane (Methyl bromlde)	74	-83-9	8280D	ND		8.5	5.1	ug/kg	1
2-Butanone (MFK)	78	-93-3	8280D	ND		34	6.8	ug/kg	1
Carbon disulfide	75	-15-0	8260D	9.1		2.5	3.4	កនិ/្រជ	1
Carbon tetrachloride	56	-23-5	8280D	ND		8.5	3.4	ug/kg	1
Chlorobenzene	108	-90-7	8260D	ND		8.5	3.4	ug/kg	1
Chloroethane	76	-00-3	8260D	ND		8.5	3.4	ug/kg	1
Chlaroform	67	-66·3	8260D	ND		8.5	3.4	ug/kg	1
Chloromethane (Methyl chloride)	74	-87-3	826013	ND		8,5	5.1	ug/k g	′.
Gyclohoxane	110	-82-7	8260D	5.9	J	8.5	3.4	ug/kg	1
1,2-Dibromp-3-chloropropane (DBCP)	96	12-8	8260⊃	ND		8.5	3.4	ug/kg	1
Dipromochloromethene	124	-48-1	8260D	ND		8.6	3.4	ug/kg	1
1,2-Dibromoethane (EDB)	108	-93-4	8260D	ND		8.5	3.4	ug/kg	1
1,2-Dichlorobenzene	95	i-60 - 1	8260D	ND		8.5	3.4	ug/kg	1
1,3-Dich orobenzene	541	-73-1	826CD	ND		8.5	3.4	ng/kg	1
1,4-Dichlombenzene	106	46-7	8260D	ND		8.6	3.4	ug/kg	1
Dichlorodifluoromethane	78	-71 - 8	8280D	ND		8.5	5.1	ug/kg	. 1
1.1-Dichlorcethane	78	-34-3	82800	ND		8.5	3.4	ug/kg	1
1,2-Dichlorcethane	107	-06-2	8286D	ND		8.5	3.4	ug/kg	1
1,1-Dichloroethene	79	35-4	8260D	ND		8.5	3.4	ug/kg	1
cis-1,2-Jichloroethene	156	-59-2	8260D	ND		8.5	3.4	ug/kg	1
trans-1,2-Dichloroetheno	156	i-60-5	8260D	NĐ		8.5	3.4	ug/kg	1
1.2-Dichloropropane	78	3-87-5	82600	ND		8.5	3.4	ug/kg	1
cis-1,3-Dichloropropene	10061	-01-5	8260D	ND		8.5	3.4	ug/kg	*
trans-1,3-Dichloropropene		-02-6	8260D	ND		8.5	3.4	ug/kg	1
E'hylbenzene	100	-41-4	8260D	ND		8.5	3.4	ug/kg	1
2-Hoxanone		-78 - 6	82600	ND		17	8.8	ug/kg	1
Isopropylbenzene	98	3-82-8	82600	ND		8.6	3.4	ug/kg	1
Mothyl acetate	75	9-20-9	8260D	ND		8.5	3.4	ug/kg	1
Mothyl tertiary butyl ether (MT3E)		4-04-4	8260D	ND		8.5	3.4	ug/kg	1
4-Methyl-2-pentanone		3-10-1	8283D	ND		17	6.8	ug/kg	1
Methylcyclohexane	108	3-87-2	8280D	14		8.5	3.4	ug/kg	1
Methylene chloride		-09-2	8280D	ND		8.6	3.4	ug/kg	1
Styrenc) <u>42-5</u>	8 2 80D	ND		8.5	3.4	ug/kg	1
1,1,2,2-Tetrachloroethane)-34-5	828013	ND		8.5	3.4	ug/kg	1
Tetrachioroethene		7-18-4	8260D	ND		8.5	3.4	ug/kg	1
Toluens		3-88-3	8260D	9.7		8.5	3.4	ug/kg	1

LOQ =mit of Quantillation	B = Daloclad in the method blank	E = Quantitution of compound exceeded the callbration (ange-	DL → Detaction Fmit	Q = Sprrogato follure
	N = Recovery is out of criteria	Pin The RPD between two GC columns exceeds 40%	J = Estimated result < LCQ and ≥ DL	L - LCS/LCSD fallars
H = Out of solution time	W = Reported no wer weight hagis			8 = MS/MSD failure

Description: B-4 (5)

Date Sampled:05/07/2021 1500

Date Received: 05/10/2021

Toluene-d8

Laboratory ID:WE10034-004

Matrix: Solid

% Solids: 85.4 05/11/2021 0008

Volatile Organic Compounds by GC/MS

Run Prep Method 1 5035	Analytical Meth 826			ila Date Analyst 021 1256 JM1	Prep (Dato	Batch 92836	Sample Wt.(g) 3.46		
Parameter			CAS mber	Analytical Method	Result	Q.	10Q	DL	Units	Run
1.1,2-Trichlore-1,2.2-Trlf.uoroethans		76-	-13-1	8260D	ND		8.5	3.4	ug/kg	1
1,2,4-Trichlorobenzene		120-	82-1	82600	ND		8.5	3.4	ug/kg	1
1,1,1-Trichloroethane		71-	-65-8	8260D	ND		8.5	3.4	ug/kg	1
1,1,2-Trichloroethane		79-	-DD-5	826 0 D	ND		8.5	3.4	ug/kg	4
Trichloroothens		79-	-01-6	8260D	ND		8.5	3.4	ug/kg	ŕ
erged)emoroutforoldoiT		75-	-39-4	8260D	ND		8.5	3.4	ug/kg	1
Vinyl chloride		75-	-01-4	8260D	ND		8.5	5.1	ug/kg	1
Xylenes (total)		1330-	-20-7	8260D,	14	J	17	6.8	ug/kg	1
Surrogate	Q	Run 1 % Recovery	Accepta Limit							
Bromofluorobenzene	•	72	47-13	8						
1,2-Dichloroethane-d4		99	53-14	2						

Semivolatile Organic Compounds by GC/MS

68-124

91

Run Prep Method 1 3546	Analytical Method 8270E	Dilution 20		rsis Date Analyst 2021 1911 STM	Ргер 05/11/2	Date Bate 021 2048 9193			
Parameter		(Num	CAS	Analytical Method	Result	Q LOQ	DL	Units	Run
Acenaphthene		83-3	32-9	8270∈	ND	63	19	ug/kg	1
Acenaphthylene		208-9	8-8	8270E	ND	63	2.2	ug/kg	1
Acelophenone		98-9	36-2	8270E	ND	300	120	ug/kg	1
Anthracene		120-1	2-7	8270E	89	63	12	ugilkg	1
Alfezine		1912-2	!4 - 9	8270E	ND	300	120	ug/kg	1
Benzaldehyde		100-E	2-7	8270E	ND	300	120	ug/kg	1
Benzo(a)anthraceno		56-5	i5-3	8270E	190	63	14	ug/kg	1
Benzo(a)pyrono		50-3	2-8	8270E	190	63	15	ug/kg	1
Benzo(b)fluoranthene		205-9	9-2	8270E	280	63	12	u g /kg	1
Bonzo(g,h,i)perylene		191-2	4-2	3270E	110	63	15	ugukg	1
Benzo(k)fluoraлthene		207-0	8-9	8270E	86	83	11	ug/kg	1
1,1'-Biphenyl		92-5	2-4	8270E	ND	300	120	ug/kg	1
4-Bromophenyl phenyl ether		101-5	5-3	8270E	ND	300	120	ug/kg	1
Butyl bonzyl phthalate		85-6	8-7	8270E	ND	300	120	ug/kg	1
Caprolactam		105-6	G-2	8270E	ND	300	120	ug/kg	1
Carbazole		86-7	4-8	8270⊡	ND	300	120	ug/kg	1
bis (2-Chloro-1-methylethyr) ether		108-6	0-1 ^N	8270E	ND	300	120	ug/kg	1
4-Chloro-3-methyl phenol		59-5		827CE	ND	300	120	ug/kg	1
4-ChloroanIllne		106-4	7-8	8270E	ND	300	120	ug/kg	1
bls(2-Chloroethoxy)methane		111-9	1-1	8270E	ND	300	120	ug/kg	1

 LOG • Limit of Quantifiction
 B = Detected in the method class MD = Not detected at the method class MD = Not detected at or above the DL M = Recovery a but of criteria MD = Not detected at or above the DL M = Recovery a but of criteria MD = Not detected at or above the DL M = Recovery a but of criteria MD = Not detected at or above the DL M = Recovery a but of criteria MD = Not detected at or above the DL M = Recovery a but of criteria MD = Not detected the calcination range MD = Recovery a but of criteria MD = Not detected the calcination range MD = Recovery a but of criteria MD = Not detected the calcination range MD = Recovery a but of criteria MD = Not detected the calcination range MD = Recovery a but of criteria MD = Not detected the calcination range MD = Recovery about of criteria MD = Not detected the calcination range MD = Recovery about of criteria MD = Not detected the calcination range MD = Recovery about of criteria MD = Not detected the calcination range MD = Recovery about of criteria MD = Not detected the calcination range MD = Recovery about of criteria MD = Not detected the calcination range MD = Recovery about of criteria MD = Not detected the calcination range MD = Recovery about of criteria MD = Not detected the calcination range MD = Recovery about of criteria MD = Not detected the calcination range MD = Recovery about of criteria MD = Not detected the calcination range MD = Recovery about of criteria MD = Not detected the calcination range MD = Recovery about of criteria MD = Not detected the calcination range MD = Recovery about of criteria MD = Not detected the calcination range MD = No

Page Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

106 Varitaga Point Drive - West Columbia, SC 29172 - (803) 791-9709 - Fex (803) 791-9111 - www.pecalabs.com

Description: B-4 (5)

Dato Sampled:05/07/2021 1500

Date Received: 05/10/2021

Laboratory ID: WE10034-004

Matrix: Solid

% Solids: 85.4 05/11/2021 0008

Semivolatile Organic Compounds by GC/MS

Run	Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date Batch
•	3546	8270E	20	05/24/2021 1911 STM	05/11/2021 2048 91939

Parameter	GAS Number	Analytical Method	Result	Q LOQ	DL	Units	Run
bis(2-Chloroelhyl)ather	111-44-4	827CE	ND	300	120	ug/kg	1
2-Chloronaphthaleno	91-58-7	8270E	ND	300	120	ug/kg	1
2-Chlorophenol	95-57-8	8270E	ND	300	123	ug/kg	1
4-Chlorophenyl phenyl ather	7005-72-3	8270E	ND	300	120	ug/kg	1
Chrysene	218-01-9	8270E	260	63	10	ug/kg	1
Dibenzo(a,h)anthrecens	53-70-3	8270E	ND	63	12	ug/kg	1
Dibenzofuran	182-64-9	8270E	310	300	120	ug/kg	1
3,3'-Dichlorobenzidine	9 1- 94-1	8270E	ND	300	12G	ug/kg	1
2,4-Dichlarephenol	120-83-2	8270E	ND	300	12G	ug/kg	1
Diethylphthelate	84-66-2	8270E	ND	300	120	ug/kg	1
Dimethyl phthe ate	131-11-3	8270E	ND	300	170	ug/kg	.1
2,4-Dimethylphenol	105-67-9	8270E	ND	300	120	ug/kg	1
Di-n-butyl phthelate	84-74-2	8270E	ND	300	120	ug/kg	1
4,6-Dinitro-2-methy phanol	534-52-1	8270⊟	ND	1600	580	ug/kg	1
2,4-Dinitrophenol	51-28-5	8270⊡	ND	L 1600	580	ug/kg	1
2,4-D nitrotaluene	121-14-2	8270E	ND	030	230	ug/kg	í
2,8-D.nitrotaluene	606-20-2	827 0 E	ND	630	230	ug/kg	1
Di-n-octylphthalate	117-84-0	8270E	ND	300	120	ug/kg	1
bis/2-Ethylhexyl)phthalato	117-81-7	8270E	ND	1600	580	ug/kg	1
Fluoranthene	206-44-0	8270E	350	63	9.8	ug/kg	1
Fluorene	86-73-7	8270E	CM	63	13	ug/kg	1
Hexachlorobenzene	118-74-1	827¢E	CM	300	120	ug/kg	1
Hexachlorobutadione	87-68-3	8270E	ND	300	120	ug/kg	1
Hexachlorocyclopentadiene	77-47-4	8270E	ND	1600	580	ug/kg	1
Hexachloroethano	67-72-1	8270E	ND	300	120	ug/kg	1
Indeno(1,2,3-c,d)pyrone	193-39-5	8270E	63	63	23	ugikg	1
Japphorone	78-59-1	8270E	ND	300	120	ug/kg	. 1
2-Methylnaphthalene	91-57-6	8270E	1600	63	23	ug/kg	1
2-Methyiphenol	96-48-7	8270E	ND	3 0 0	120	ug/kg	1
3+4-Methylphenal	106-44-5	8270E	ND	630	230	₿g/kg	1
Naphthalene	91-20-3	8270E	980	63	23	ug/kg	1
2-Nitroanline	88-74-4	8270E	ND	630	230	ug/kg	1
3-Nitroenline	99-09-2	8270E	ND	630	230	ug/kg	1
4-Nitmanilina	100-01-6	8270E	ND	630	230	ug/kg	1
Nitrobenzene	98-95-3	8270E	ND	300	120	ug/kg	1
2-Nitrophenol	88-75-5	8270E	ND	830	230	ug/kg	1
4-Nitrophenol	100-02-7	8270E	ND	1600	580	ug/kg	1
N-Nitrosodi-n-propylamine	621-64-7	8270⊟	ND	300	120	ug/kg	1
N-Nitrosodiphenylamine (Diphonylamine)	86-30-6	8270€	ND	300	120	ug/kg	1
Pentachloropherol	87-86-5	827 0 F.	ND	1600	580	ug/kg	1

LOQ = Lint : of Gushillation	B = Datested in the method b
ND = Not datested at a above the DL	N = Recovery is out of witer a

 $[\]mathsf{F} = \mathsf{Quantilation}$ of compound exceeded the califordian range . DL - Detection Limit P = The RPU polycon live GC columns exceeds 70%

 $J=\text{Fatimated result} \times \text{LOG}$ and 2/R

© = Surragate fallura Lie CCS/LCSD (ailuré 8 = M8/MSD (a) are

Wie Reported on Wet walgot basis I = Dut of holding time

Page Analytical Services, LLC (formerly Shealy Environmental Services, Inc.) 106 Variage Point Drivo West Columbia, SC 29172 (809) 791-9700 | Fax (809) 791-9111 | www.pacelobs.com

Description; 日-4 (5)

Date Sampled:05/07/2021 1500

Date Received: **05/10/2021**

Laboretory ID:WE10034-004

Matrix: Solid

% Solids: 85.4 05/11/2021 0008

Semivolatile Organic Compounds by GC/MS

Run Prep Method	Analytical Method D				Prep Date	Batch
1 3546	8270⊡	20 0	J5/ <mark>24/2</mark> 021 1911	STM	05/11/2021 2048	91939

Paramotor	CAS Number	Analytical Method	Rosuit Q	LOG	DL	Units	Run
Phenanthrene	85-01-8	8270E	920	63	17	ug/kg	<u>†</u>
Phenol	108- 9 5-2	8270E	ND	300	120	ug/kg	1
Pyrene	129-00-0	8270E	310	63	12	ug/kg	1
2,4,5-Trichloropheno.	95-95-4	8270E	ND	300	120	ug/kg	1
2,4,6-Trichlorophonol	88-06-2	8270E	ND	300	120	ug/kg	1

Surrogate	Run 1 / Q % Recovery	Acceptance Limits
2-Fluoroblehenyl	75	33-102
2-Fluorophenol	47	35-115
Nitrobenzene-d5	72	22-109
Phonoi-d5	58	33-122
Terphenyl-d14	71	41-120
2.4.6-Tribromophenol	62	30-117

ICP-MS

Run	Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date	Batch	
1	30502	8020B	1	05/14/2021 1228 BNW	05/14/2021 0404	92127	
1	7471B	7471B	1	05/10/2021 1827 CMS2	05/12/2021 1540	820 8 4	

Parameter	CAS Number	Analytical Method	Result	Q	LOQ	DL	Units	Run
Aluminum	7429-90-5	6020E	7600		11	2.7	mg/kg	1
Antimony	7440-36-0	6020B	1.6		0.54	0.22	mg/kg	1
Arsonic	7440-38-2	6020B	7.5		0.54	0.22	mg/kg	1
Barlum	7440-39-3	6020B	490		1.4	0.34	mg/kg	1
Beryllium	7440-41-7	6020B	0.32		0.11	0.037	mg/kg	1
Cadmium	7440-43-9	6020B	0.18		0.14	0.027	mg/kg	1
Calcium	7440-70-2	6020B	18000		110	33	mg/kg	1
Chromium	7 44 0-47-3	6020B	10	В	1.4	0.60	mg/kg	1
Cobalt	7440-48-4	6020B	4.9		1.4	0.33	mg/kg	1
Copper	7440-50-8	6020B	410		1.4	0.35	mg/kg	i
Iran	7439-89-6	6020B	15000		14	2.7	mg/kg	1
Lead	7439-92-1	6020B	55		0.27	0.074	mg/kg	•
Magnesium	7439-95-4	6020B	1000		110	27	mg/kg	1
Manganese	7439-96-5	6020B	380		1.4	0.39	mg/kg	1
Mercury	7439-97-6	7471B	0.089	J	0.094	0.023	mg/kg	1
Nickel	7440-02-0	802QB	13	-	1.4	0.33	mg/kg	•
Potassium	7440-09-7	6020B	980		110	27	mg/kg	1
Selenium	7782-49-2	6020B	1.5		1.4	0.51	mg/kg	1
Silver	7440-22-4	8020B	ND		0.27	0.065	mg/kg	1

LCQ = Limit of Quantilation ND • Not detected at or above the DL

H = Out of hoding time

B = Datacted in the method blank N ≅ Recovery is put of critaria W = Reported on wet weight basis

Ele Quantitation of compound exception the calibration range | DE = Detection Up : P - The RPD between two GC columns exceeds 40%.

J = Fatimatac rasult < LOQ and \succeq DL,

Q = Surrogate fallura L = LCB/LCBC failure S = MS/MSD falure

Pace Analytical Services, LLC (formerly Sheaty Environmental Services, Inc.)

106 Vanlago Point Drive - West Columbia, SC 29172 (803) 791-9700 - Fax (503) 791-9111 - www.pacelabs.com

Description: B-4 (5)

Dato Sampled:05/07/2021 1500

Date Received: 05/10/2021

Laboratory ID: WE10034-004

Matthe Solid

% Solids: 85.4 05/11/2021 0008

ICP-MS

Run Prep Method Analytical Method Dilution Analysis Date Analyst Prep Date Batch 1 3050B 6020B 1 95/14/2021 1226 BNW 05/14/2021 0404 92127 1 7471B 7471B 1 05/13/2021 1627 CMS2 05/12/2021 1545 92064							
1 3050B 6020B 1 05/14/2021 1226 BNW 05/14/2021 0404 92127	Run	Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date	
1 7471B 7471B 1 05/13/2021 1627 CMS2 05/12/2021 1545 92064	1		6020B	1	05/14/2021 12/26 BNW	05/14/2021 0404	92127
	1	7471B	7471B	1	06/13/2021 1627 CMS2	05/12/2021 1545	92064

Parameter		CAS Number	Analytical Method	Rosult Q	LOQ	DL	Units	Run
Sodium	-	7440-23-5	6020B	140	110	40	mg/kg	1
Thaillum		7440-28-0	6020B	0.16	0.14	0.033	mg/kg	1
Vanadium		7440-82-2	6920B	22	1.4	0.27	mg/kg	1
Zinc		7440-88-6	6020B	70	2.7	0.54	mg/kg	1

LOG = Limit of Quantitation App = Not delegted at or above the OL. -1 ≈ Out of holding time.

3 - Detected in the motival black N = Resolvery telault of orliertsWile Reported on woll weight basis E = Quantitation of compound expeeded the callborror range | DL = Datacton limit $\text{P} \approx \text{The RPD}$ between two GC politrins exceeds 40%

 $J = Extlinated result < LOQ and <math display="inline">\geq DL$

Q = Surrogate failure L → LCS/LCSD fallord 8 = MS/MSD (alure

Description: B-5 (2)

Date Sampled:05/07/2021 1510

Date Received: 05/f0/2021

Laboratory ID:WE10034-005

Matrix: Solid

% Solics: 82.6 05/11/2021 0008

Volatile Organic Compounds by GC/MS Analytical Method Dilution Analytical Parts A

Run Prep Method 1 5035	Analytical Method 8280D	Dilution 1		/sis Date Analyst 2021 1321 JM1	Prop Date	Batch 92636	\$ample Wt.(g) 6.24		
Parameter		Num	CAS	Analytical Method	Result Q	LOQ	DL	Units	Rur
Acatone		67-6	34-1	826017	ND	19	7.8	υg/kg	1
Benzene		71-4	13-2	8280D	ND	4.9	1.9	ьg/kg	1
Bromodichloromothane		75-2	7-4	8260D	ND	4.9	1.9	ug/kg	1
Bromoforin		75-2	5-2	8260D	ND	4.9	1,9	ug/kg	1
Bromomethane (Methyl bromide)		74-6	13-9	8260D	ND	4.9	2.9	ug/kg	1
2-Butanone (MEK)		78-6	3-3	8280D	ND	19	3.9	ug/kg	1
Carbon disulfide		75-1	5-0	82 80 U	КO	4.9	1,9	ug/kg	1
Carbon tetrachloride		56-2	3-6	82 60 D	ND	4.9	1,9	ug/kg	1
Chloroberzene		108-9	0-7	8260D	ND	4.9	1.9	ug/kg	1
Chloroethane		76-0	0-3	8260D	ND	4.9	1.9	ug/kg	1
Chloroform		67-6	86-3	8260D	ND	4.9	1.9	ug/kg	1
Chloromethane (Methyl chloride)		74-8	87-3	8260D	ND	4,8	2.9	ug/kg	1
Cyclohexane		110-8	2-7	8260D	ND	4.9	1.9	ug/kg	1
1,2-Dibromo-3-chloropropane (DB)	CP)	96-1		8260D	ND	4,9	1.9	ug/kg	1
Dibromochloromothane	•	124-4	8-1	82605	ND	4,9	1.9	ug/kg	1
1,2-Dibromosthane (EDB)		108-9	3-4	8260D	ND	4.9	1.9	ug/kg	1
1,2-Dichlorobenzene		95-6	0-1	8260D	ND	4.9	1.9	ug/kg	1
1,3-Dichlorobenzene		541-7		8260D	ND	4.9	1.9	ug/kg	
1,4-Dichlorobenzene		108-4	6-7	8260D	ND	4.9	1.9	ug/kg	1
Dichlorodifluoromethane		75-7		8280D	ND	4.9	2.9	ug/kg	1
1,1-Dichloroethane		75-8		82800	ND	4.9	1.9	ug/kg	1
1,2-Dichloroethane		107-0		828013	ND	4.9	1.9	ug/kg	1
1,1-Dichlaroethene		75-3		8280D	ND	4.9	1.9	ug/kg	1
cls-1,2-Dichloroethene		156-5	9-2	8280D	ND	4.9	1.9	ug/kg	1
frans-1,2-Dichloroethene		156-6	0-5	8280D	ND	4.9	1.9	ug/kg	1
1,2-Dichloropropane		78-8	7-5	8260D	ND	4.9	1.9	ug/kg	1
ds-1,3-Dichloropropene		10061-0	1-5	826DD	ND	4.9	1.9	ug/kg	1
rans-1,3-Dichloropropene		10061-0		826DD	ND	4.9	1.9	ug/kg	1
Ethylbenzene		100-4		8260D	ND	4.9	1.9	ug/kg	1
2-Hexanone		591-7		8260D	ND	9.7	3.9	ug/kg	1
sopropylbenzene		98-8		8260D	ND	4.9	1.9	ug/kg	i
Methyl acetate		79-2		8260D	ND	4.9	1.9	ug/kg	· i
Methyl tertiary butyl othor (MTBE)		1634-0		8260D	ND	4.9	1.9	ug/kg	1
4-Methyl-2-pentanone		108-1		8260D	ND	9.7	3.9	ug/kg	1
Methylcyclohoxane		108-8	7-2	8260D	ND	4.9	1.9	ug/kg	1
Methylene chloride		75-0		8260D	ND	4.9	1.9	ug/kg ug/kg	1
Styrone		100-4		8260D	۸D	4.9	1.9	ug/kg	1
1,1,2,2-Tetrachloroethane		79-3		8260D	ND	4.9	1.9	ug/kg	1
Tetrachloroethene		127-1		8260D	ND	4.9	1.9		1
Paluene		108-8	-	8260D	ND	4.9 4.9	1.9	ug/kg ug/kg	1

LOQ = Limit of Quantization NU = Not detected at an above the DL B = Detected in the method blank

E = Quantitation of compound exceeded the calibration range | Diu = Datection Limit

Q = Surrogate fature L = LCS/LCSD fallure

H = Out of halding time

Nin Receivary is out of ofter a Wi= Reported on wet weight pasts P=714 RPD between two GC columns exceeds 40%.

 $J = \text{Estimated result} \leq I CQ \text{ and } \geq DL$

\$ = M8/M8D failure

Pada Analytical Sarvinae, LLC (formony Shoaly Environmental Services, Inc.)

106 Vantaga Point Drive - West Columbia, SC 29172 (803) 791-9700 - Pax (803) 791-9111 - www.pacelaba.com

Description: B-5 (2)

Date Samplod:05/07/2021 1510

Date Received: 05/10/2021

Xylenes (total)

bis (2-Chioro-1-methylethyl) ether.

4-Chloro-3-methyl phanol.

bis(2-Chloroethoxy)methane

4-Chloroanilitie

Laboratory ID:WE10034-005

Matrix: Solid

% Solide: 82.6 05/11/2021 0008

3.9

ug/kg

1

Volatile Organic Compounds by GC/MS

Run Prop Method 1 6035	Analytical Method 8260D		ysis Date Analyst /2021 1321 JM1	Prep Date	Batch 92636	Sample Wt.(g) ಕಿ.24		
Parameter		CAS Number	Analytical Method	Result Q	LOG	DL	Units	Run
1,1,2-Trichloro-1.2,2-Trifluor	oethare	76-13-1	8260D	ND	4.9	1.9	ug/kg	1
1,2,4-Trichlorobenzene		120-82-1	8260D	ND	4.9	1.9	ug/kg	1
1.1.1-Trichlomothane		71-55-8	826 00	ND	4.9	1.₽	ug/kg	1
1,1-2-Trichloroethane		79-00-5	8283D	ND	4.9	1.9	ug/kg	1
Trichloroethene		79-01-6	8268D	ND	4.9	1.9	ug/kg	1
Trichlorofluoromethane		75-69-4	8260D	ND	4.9	1.9	ug/kg	1
Vinyl chloride		75-01-4	826CD	ND	4.9	2.9	ug/kg	1

826CD

ND

9.7

1330-20-7

Surrogate	Q	Run 1 % Recovery	Acceptance Limits
Bromofluoraharizano		112	47-138
1,2-Dichloroe(hane-d4		102	53-142
Toluene-d8		105	68-124

Semivolatile Organic Compounds by GC/MS

Run Prep Method 1 3546	Analytical Method 8270F	Dilution 1	•	rsis Dato Analyst 2021 1936 STM	-	te Batch 1 2048 91939 			
Parameter	•	Num	A\$ ber	Analytical Method	Result Q	100	DL	Units	Run
Acanaphthene		83-3	2-9	8270⊑	ND	3,2	0.97	ug/kg	1
Acanaphthylene		208-9	6-8	8270≝	ND	3.2	1.1	ug/kg	1
Acetophenone		98-8	6-2	8270E	ND	15	5.9	ug/kg	1
Anthracens		120-1	2-7	8270E	ND	3.2	0.60	ug/kg	1
Atrazine		1912-2	4-9	8270E	ND	15	5.9	ug/kg	1
Benzaldehyde		100-5	2-7	8270E	ND	15	5.9	ug/kg	1
Benzo(a)anthracene		56-5	5-3	8270E	ND	3.2	0.69	ug/kg	1
Benzo(a)pyrene		50-3	2-8	8270E	ND	3.2	0.77	ug/kg	1.
Benzo(b)fluoranthene		206-9	9-2	827CE	ND	3.2	0.59	ug/kg	1
Benzo(g,h,i)perylene		191-2	4-2	8270E	ND	3.2	0.78	ug/kg	1
Benzo(k)fluorenthene		207-0	8-8	8270E	ND	3.2	0.56	ug/kg	1
1,1'-Biphenyl		92-5	2-4	8270E	ND	15	5.9	ug/kg	1
4-Bromophenyl phenyl ethar		101-5	5-3	8270E	ND	15	5.9	ug/kg	1
Butyl benzyl phthalate		85-6	8-7	8270E	ND	15	5.9	ug/kg	1
Caprolactam		105-6	0-2	8270E	ND	15	5.9	ug/kg	1
Carbazolo		86-7	4-8	8270E	ND	15	5.9	ug/kg	1

LOC - Limit of Quantitation	Bin Detected in the method blank	R = Quantilation of compound excorded the patitivation range	BL = Datection Linet	Q = Surrogets failure
ND = Not datactes: at an above the DL	N = Recovery is put of orlleris	P = The RPD inviveen two GC calumna exceeds 40%	u = Esilmatac result < 1,0Q and ≥ DL	u ≃ LCS/LCSD fa ure
U = Out of holding corp.	W = Renoted on wer walget basis			S = MS/MSC falls to

8270F

8270E

8270E

8270⊟

ND

ND

ND

ND

15

15

15

45

5.9

5.9

5.9

ug/kg

ug/kg

ug/kg

ug/kg

1

1

1

Pace Analytical Sorvices, LLC | (formerly Shealy Environmental Services, Inc.) 106 Ventage Point Drive - West Columbia, SC 29172 - (800) 791-9700 - Fax (803) 791-9111 - www.papelaba.com

108-80-1

59-50-7

106-47-8

111-91-1

Description: B-5 (2)

Date Sampled:05/07/2021 1510 Date Received: 05/10/2021 l.aboratory ID: WE10034-005

Matrix: Solid

% Solids: 82,6 05/11/2021 0008

Semivolatile Organic Compounds by GC/MS

 Run
 Prep Method
 Analytical Method
 Dilution
 Analysis Date
 Analysis
 Prep Date
 Batch

 1
 3546
 8270E
 1
 05/24/2021 1936 STM
 05/11/2021 2048 91939

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
bis(2-Ch!orgethyl)ether	511-44-4	8270E	ND	15	5.9	ug/kg	1
2-Chloronaphthaiene	91-58-7	8270E	ND	15	5.9	ug/kg	ſ
2-Chlorophenol	95-57-8	8270E	ND	15	5.9	ug/kg	1
4-Ch!orophonyl phonyl ether	7095-72-3	8270E	ND	15	5.9	ug/kg	1
Chrysene	218-01-9	8270E	ND	3.2	0,53	ug/kg	1
Dibenzo(a,h)anlhracage	53-70-3	82705	ИÐ	3.2	0.60	ug/kg	1
Dibenzafuran	132-64-9	8270E	NO	15	5,9	ug/kg	1
3,3'-Dichlorobenzidine	91-94-1	8270E	ND	15	5.9	ug/kg	1
2,4-Dichlarophenal	120-83-2	8270E	NI3	15	5.9	ug/kg	1
Diethylphthalate	84-66-2	8270E	ND	15	5.9	ug/kg	1
Dimethyl phthalate	131-11-3	8270E	ND	15	8.7	ug/kg	1
2,4-Dimethylphenol	105-87-9	8270E	ND	15	5.9	ug/kg	1
Di-n-butyl ohthalato	84-74-2	8270E	ND	15	6.9	ug/kg	1
4,6-Dinitro-2-mathylphenol	534-52-1	8270E	ND	78	29	ug/kg	1
2,4-Dinitrophenol	51-28-6	8270E	ND L	78	29	ug/kg	1
2,4-Dinitrotoluene	121-14-2	8270E	ND	32	12	ug/kg	1
2,6-Dinitrataluene	806-20-2	8270E	ND	32	12	ug/kg	1
Di-n-octylphthalate	117-84-0	8270E	ND	15	5.9	ug/kg	1
bis(2-Ethylhexyl)phthalate	117-81-7	8270E	ND	78	29	ug/kg	1
Fluoranthene	206-44-0	8270E	GM	3.2	0.49	ug/kg	f.
Fluorene	86-73-7	8270E	ND	3.2	0.67	ug/kg	1
Haxachlarobenzene	118-74-1	827 0 E	ND	15	5.9	ug/kg	1
Hexachlorobutadiene	87-68-3	8270E	ND	15	5.9	ug/kg	1
Hexachlorocyclopentediene	77-47-4	8270E	ND	78	29	ug/kg	1
Hexachloroathane	67-72-1	8270E	ND	15	5.9	ид/кд	1
Indeno(1,2,3-c,d)pyrene	193-39-5	8270E	ND	3.2	1.2	ug/kg	1
Isaphorone	78-69-1	8270E	ND	15	5.9	ug/kg	1
2-Methylnaphthalene	91-57-8	8270E	ИD	3.2	1.2	ug/kg	1
2-Methylphenol	95-48-7	827CE	ND	15	5.9	ug/kg	1
3+4-Methylphenol	106-44-5	8273E	ND	32	12	vg/kg	1
Naphthalene	91-20-3	8270E	ND	3.2	1.1	ug/kg	1
2-Ntroeniline	88-74-4	8270E	ND	32	12	ug/kg	1
3-Nitroanii ne	99-09-2	8270∃	ND	32	12	ug/kg	1
4-Nitroaniline	100- Q 1-8	8270E	ND	32	12	ug/kg	1
Nitrobenzene	98-95-3	8270E	CN	15	5.9	ug/kg	1
2-N trophenol	88-75-5	8270E	ND	32	12	ug/kg	1
4-Nitrophenol	100-02-7	8270F	ND	78	29	ug/kg	1
N-Nitrosadi-n-propylamine	821-64-7	8270E	ND	15	5,9	ug/kg	1
N-Nitrosodiphenylamine (Diphenylamine)	86-30-6	8270E	ND	15	5.9	ug/kg	1
Pentachlerophenol	87-86-6	8270E	ND	78	29	ug/kg	1

	_ -			
LOG = Lint : of Quantifalian	B = Detected in the method blank	E = Quantitation of compound exceeded the calibration range	DL = Datection Limit	Q - Surregale fallum
ND = Not obtacled at or above the DL	N - Recovery is but of ofteda	P = The RPD batween two GC calumns exceeds 40%	J = Eatimated result < LQQ png > DL	
H ≃ Out of holding lime	Will Reported on Web weight basis			8 = M8/M8D fallure

Page Analytical Services, LLC | formerly Sheaty Environmental Services, Inc.)

106 Vantage Point Drive West Columbia, SC 29172 (803) 791-9700 Fax (803) 791-9111 www.pacclabs.com

Coscription: B-5 (2)

Date Samp ad:05/07/2021 1510 Dato Received: 05/10/2021 Laboratory ID:WE10034-005

Matrix: **So**lid

% Solids: 82.6 05/11/2021 0008

Semivolatile Organic Compounds by GC/MS

Run Prep Method 1 3548	Analytical Method 5 8270E	Dilution 1	•	Date Analyst 1 1936 STM	05/11/2021 2	Batch 2048 91939			
Parameter		Num		Analytical Method	Result Q	LOQ	DL_	Units	Run
Phenanthrene	·	85-0	01-8	8270Ë	ND	3.2	0,84	ug/kg	1
Phenol		108-9	95-2	8270E	ND	15	5.9	ug/kg	7
Pyrene		129-0	0-0	8270E	ND	3.2	0.59	ug/kg	1
2,4.5-Trichlorophenol		95-9	95-4	8270E	ND	15	5.9	ug/kg	1
2,4,6-Trichlorophenol		88-0	06-2	8270E	ND	15	5.9	ug/kg	1
Surrogate		lun 1 /	Acceptanc Limits	: G					
2-Fluoroblphenyl		76	33-102						
2-Fiuorophenol		80	35-115						
Nitrobanzone-d5		72	22-109						
Phenol-d5		81	33-122						
Terphenyl-d14		74	41-120			•			
2,4,8-Tribremophenal		92	30-117						

ICP-MS

				141			
Run	Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date	Batch	
1	3050B	6020B	1	Q5/14/2021 1312 BNW	06/14/2021 0404	92127	
4	7 4 71B	7471B	1	05/13/2021 1629 CMS2	06/12/2021 15/15	92084	

Parameter	CAS Number	Analytical Method	Result	Q	Log	DL	Units	Run
Aluminum	7429-90-5	8020B	31000		10	2.6	mg/kg	1
Artimony	7440-38-0	6020B	ΝĎ		0.52	0.21	mg/kg	1
Arsenic	7440-38-2	6020B	1.8		0.52	0.21	m g /kg	1
Barlum	7440-39-3	6020B	120		1.3	0.32	mg/kg	1
Beryllium	7440-41-7	6020B	0.41		0.10	0.035	mg/kg	1
Gadmlum	7440-43-9	6020B	МÞ		0.14	0.026	mg/kg	1
Calcium	7440-70-2	6020B	180		100	31	mg/kg	1
Chromium	7440-47-3	6020B	19	В	1.3	0.58	mg/kg	1
Cobalt	7 44 0-48-4	6020B	3.4		1.3	0.31	mg/kg	1
Copper	7440-50-8	6020B	11		1.3	0.34	mg/kg	1
Iron	7439-89-6	6020B	29000		14	2.6	mg/kg	4
Lead	7439-92-1	6020B	12		0.26	0.071	mg/kg	1
Magnesium	7439-95-4	6020B	2800		100	26	mg/kg	1
Manganese	7439-96-5	8020B	170		1.3	0.38	mg/kg	1
Mercury	7439-97-6	7471B	ND		0.090	0.022	mg/kg	1
Nickel	7440-02-0	6020B	12		1.3	0.31	m g /kg	1
Potassium	7440-09-7	6020B	4600		10 0	26	mg/kg	1
Selenium	7782-49-2	6020B	0.67	J	1.3	0.49	mg/kg	1
Si.ver	7440-22-4	8020B	ND		0.26	0.063	mg/kg	1

LOQ = Limit of Quantitation	R = Detected in the method blank	E = Quantitation of comparind exceeded the calleration range	DL - Delection Umit	© → Surrogete fallum
FOOR - IT HIS OLD WITHING STOL	11 - 35125.24 1.1 . 10 1 10. 104 7/31 1	·		L = LCS/LCSD fature
NO = Not detected at or above the DL	N = Recovery is out of orceda	P = The RPD Enlysten two GC columns extrands 43%	$J = \pm atimated result < LDG and > DL$	ing presenced istuite
112 1141 20:20:24 01 01 110 0 0 1 11 11				B = M8/M8D failure
H = Qut of holding time	W = Reported on wet weight basis			D - MOTH 417 mile to

Description: B-5 (2)

Date Sampled:05/07/2021 1510

Qate Received: 05/10/2021

Leboratory ID:WE10034-005

Mat/lx: Solid

% Solids: 82.8 05/11/2021 0008

ICP-MS

				101 1110			
Run	Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date	Batch	
1	3050B	60205		05/14/2021 1312 BNW		92127	
1	7471B	74718		05/13/2021 1629 CMS2			

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Sodlum	7440-23-5	802 0 B	ND	100	38	mg/kg	1
Thallium	7440-28-0	6020E	0.44	0.18	0.031	mg/kg	1
Vanadium	7440-82-2	6020B	41	1.3	0.26	mg/kg	1
Zinc	7440-68-6	60208	50	2.6	0.52	mg/kg	1

LCQ = Emit of Quantilation ND = Not detected at or above the DL.

∃ ≂ Oplocied in the method blank

Ein Quantillation of compound exceeded the calibration range in DL in Deposition Limit

Q = билодача (allure

H - Out of holding lique Wie Recorled on wolliweight basis

 $N = \mathsf{Racoverylle}$ out of orderia

P = The RPS between two GC tolumns expaeds 40%

 $J = Est \, \text{meted regull} \leq LOQ \, \, \text{and} \geq \mathcal{C}L$

L = LCS/LCSD failure S = MS/MSD fature

Page Analytical Services, LLC (Intranty Sheety Environmental Services, Inc.)

106 Vantage Point Drive Wost Columbia, SC 28172 (803) 791-9700 Fax (803) 791-0111 www.pacelabs.com

Description: GW-1

Date Sampled:06/07/2021 1300 Date Received:05/10/2021 Laboratory ID:**WE10034-006** Matrix: **Aqueous**

Volatile Organic Compounds by GC/MS

Run	Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date	Batch
1	5030B	8260D	1	06/16/2021 1954 JDF		92459
3	5 030 B	8260D	1	06/20/2021 0230 CJU2		92881

Parameter	CAS Number	Analytical Method	Result_Q	LOQ	DL	Units_	Run
Acetone	67-64-1	8260D	ND	20	5.0	ug/L	1
Bonzene	71-43-2	8230D	ND	1,0	0.40	ug/L	1
Bramodichloromethane	75-27-4	8260D	ND	1,0	0.40	ug/L	1
Bremoform	75-25-2	8260D	ND	1.0	0.40	ug/L	1
Bromomethane (Methyl bromide)	74-83-9	8260D	ND	2.0	0.40	ug/L	4
2-Butanone (MEK)	78-93-3	8260D	NO	10	2.0	սց/և	1
Carbon disulfide	75-1 5 -0	8260D	ND	1.0	0.40	ug/L	1
Carbon tetrachloride	56-23-5	8260D	ND	1.0	0.40	ug/L	1
Chlorobanzane	108-90-7	8260D	ND	1.0	0.40	ag/L	1
Chlorocthane	75-00-3	8260D	ND	2.0	0.40	ug/L	1
Chloraferm	67-66-3	8260D	ND	1.0	0.40	ບ໘/ໄລ	1
Chloromothane (Methyl chloride)	74-87-3	8260D	ND	1.0	0.50	Ա Ե/14	1
Cyclohexano	110-82-7	8260D	ND	1.0	0.40	սց/Լ	1
1.2-Dibromo-3-chloropropene (DBCP)	96-12-8	8260D	ND	1.0	0.40	ug/L	1
Dibromochloromethane	124-48-1	8260D	ND	1.0	0.40	ug/L	•
1,2-Dibromoethane (EDB)	106-93-4	8260D	NO	1.0	0.40	ug/L	1
1,2-Dichlorobenzene	95-50-1	82600	МÐ	1.0	04,0	ug/L	3
1.3-Dichiorobenzene	541-73-1	8260D	ND	1.0	0,40	ug/L	1
1.4-Dichlorobenzene	106-48-7	8260D	ND	1.0	0.40	ug/L	1
Dichlorodifluoromethane	75-71-8	8260D	ND	2.0	0,60	ug/L	1
1,1-Dichloroethane	75-34-3	8260D	ND	1.0	0,40	ug/L	1
1,2-Dichloroethane	107-06-2	826010	ND	1.0	0.40	ug/L	1
1,1-Dichlarcethere	75-35-4	8 2 60D	ND	1.0	0.40	ug/L	1
cls-1,2-Dichloraethene	156-59-2	8280D	ND	1.0	0.40	ug/L	1
trans-1,2-Dichlorpethene	158-60-5	82800	ND	1.0	0.40	ug/L	1
1,2-Dichloropropene	78-87-5	8260D	ND	1.0	0.40	ug/L	1
cls-1.3-Dichloroproper-e	10061-01-5	8260D	ND	1.0	0.40	ug/L	1
trans-1,3-Dichloropropene	10061-02-6	82600	CN	1.0	0.40	ug/L	1
E:hylbenzene	100-41-4	82600	ND	1.0	0.40	ug/L	1
2-Hexanone	591-78-8	82 6 0D	ND	10	2.0	ug/L	1
Isopropylbenzene	98-82-8	8260D	ND	1.0	0.40	ug/L	1
Mothyl acetate	79-20-9	8260D	ND	1.0	0.40	ug/L	1
Methyl tertiary butyl ether (MTBE)	1634-04-4	8260D	ND	1.0	0.40	ug/L	1
4-Mothyl-2-pentanone	108-10-1	8260D	ND	10	2.0	ug/L	1
Mathylcyclohexane	108-87-2	8260D	ND	ວ .0	0.40	ug/L	1
Methylone chloride	75-09-2	82 6 0D	ND	1.0	0.40	ug/L	រ
Styrene	100-42-δ	8280D	ND	1.0	0.41	ug/L	1
1,1,2,2-Teirachloroethane	79-34-5	8280D	NO	1.0	0.40	ug/L	1
Tetrachloroethone	127-18-4	8260D	NΩ	1.0	0.40	ug/l.	1

LOQ = Umit of Quantitation	R = Colexated in the method blank	E = Quantitation of compound recorded line calibration range.	DL - Celacion Limit	Q = 8.ifmgate läitura
FOX - Di lu un aliminaran			J = Edimalod result < JOQ and ≥ BL	L ~ LCS/LCSO fallura
ND - Not detacted at probove the DU	N ≃ Recovery is out of militala	P = Yng RPD Ealween two GC polumns axposes 40%	0 = Emilianico (Sedi. 4 Cod ai d S. or.	E TODIEGO: Million:
				S = MS/MSD (silura
H = Qul of holding time	W = Reported on wat weight posits			

Pacu Analytical Services LLC (formerly Sheaty Environmental Services, Inc.)

¹⁰⁶ Vantage Point Drive - West Columbia, SC 29172 (803) 781-9700 - Fax (803) 791-9117 - www.pacelabs.com

Description: GW-1

Date Sampled:05/07/2021 1300 Data Received: 05/10/2021

Laboratory ID: WE10034-006

Metrix: Aqueous

Volatile Organic Compounds by GC/MS

Run	Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date	Batch
1	50303	8260D	1	05/18/2021 1954 JDF	•	92459
3	503 0 B	8260D	1	05/20/2021 0230 CJL2		92881

Parameter	CAS Number	Analytical Method	Result Q	LOQ	ĎL	Units	Run
Toluene	108-88-3	82600	ND	1.0	0.40	ug/L	1
1.1.2-Trichloro-1,2,2-Trifluoroothane	76-13-1	8260D	ND	1.0	0.42	ug/L	1
1.2.4-Trich'orobonzene	120-82-1	8260D	ND	1.0	0.40	ug/L	1
f. 1,1-Tr!chloroathane	71-55-B	8260D	ND	1.0	0.40	ug/L	1
1.1,2-Trichloroethane	79-00-5	8280D	ND	1.0	0.40	ug/L	1
Trichloroethene	79-01-6	8280D	ND	1.0	0.40	ug/L	1
Trichlorofluoromethane	75- 6 9-4	82 60 D	ND	1.0	0.40	ug/L	1
Vlnyl chloride	75-01-4	826010	ND	1.0	0.40	ug/L	1
Xylenes (total)	1330-20-7	82600	ND	1.0	0.40	ug/L	1

Surrogate	Q	Run 1 % Recovery	Acceptance Limits	Q	Run 3 Accepts % Recovery Limi	
Bromofluorobenzene		97	70-130		96 70-1	30
1,2-Dichleroathane-d4		89	70-130		108 70-1	30
Toluone-d8		96	70-130		108 70-1	30

Semivolatile Organic Compounds by GC/MS

Offine Compounds by Comin							
Run Prep	Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date	Batch	
1	3520C	8270E	1	05/16/2021 1633 STM	05/13/2021 1422	92194	

Parameter	CAS Number	Analytical Method	Rosult Q	LOQ	DL	Units	Run
Acanaphthene	83-32-9	8270E	ND	0.16	0.040	ug/L	1
Acenephthylene	208-96-8	8270E	ND	0.16	0.040	ug/L	1
Acetophenone '	98-86 - 2	8270E	ND	0.80	0.23	ug/L	1
Anthracene	120-12-7	8270F.	ND	0.16	0.040	ug/L	1
Atrazine	1912-24-9	8270E	ND	0.80	0.20	ւք/և	1
Benzaldehyde	100-52-7	8270E	ND	4.0	0.27	ug/L	1
Benzo(a)arthracene	58-55-3	8270E	ND	0.16	0.040	ug/L	1
Bonzo(a)pyrane	50-32-8	8270E	ND	0.16	0.040	ug/L	1
Benzo(b)fluorantheno	205-99-2	8270E	ND	0.16	0.040	ug/L	1
Benzo(g.h,l)poryleno	191-24-2	8270E	ND	0.16	0.040	ψg/l.,	1
Benzo(k)fluoranthene	207-08-9	8270E	ND	0.16	0.040	ug/L	1
1 1'-Biphenyl	92-52-4	8270E	ND	0.80	0.21	ug/L	1
4-Bromopheny' phenyl ether	101-55-3	82700	ND	0.80	0.15	ug/L	1
Butyl benzyl phthalate	85-68-7	8270E	ND	4.0	0.21	ug/L	1
Caprolactem	105-60-2	8270E	ND	4.0	0.71	ug/L	1
Ca/bazole	86-74-8	82705	ND L	0.80	0.040	ug/L	1
bls (2-Chloro-1-methyrethyl) ether	108-60-1	8270⊟	ND	0.80	0.17	ug/L	1
4-Chlore-3-methyl phenol	59-50-7	8270E	ND	0.80	0.28	ug/L	1

LOQ a Limit of Quantilation B = Detected in the method blank E = Quantitation of compound exceeded the collimation range | DL = Detection Limit Q = Surrogate fallure ND = Not detected at or above the DL. N = Recovery is but of other a P = I'ha RPD batwaen two GC columns exceeda 40% $J = \text{Billimated result} \in \text{LOQ}$ and $\times \text{OL}$ u = LOS/LOSD failura H • Out of holding time W = Reported on wet weight passa S = M8/M8D feture

Pace Analytical Services, LLC (formerly Shoaly Environmental Services, Inc.)

106 Vantage Point Drive - West Columbia, SC 29172 (803) 791-9700 - Fax (803) 791-9111 - www.padelabs.com

Description: GW-1

Date Sampled:05/07/2021 1300 Date Received:05/10/2021 Laboratory ID:**WE10034-006** Matrix: **Aqueous**

Semivolatile Organic Compounds by GC/MS

Run Prep Method Analytical Method Dilution Analysis Date Analyst Prep Date Batch
1 3520C 8270E 1 05/16/2021 1633 STM 05/13/2021 1422 92194

Parameter .	CAS Number	Analytical Method	Result	Q	Loa	DL.	Units_	Run
4-Chlorcaniline	106-47-8	8270E	NÖ	_	0.80	0.13	ug/L	1
bis(2-Chloroethoxy)methane	111-91-1	8270E	ND		0.80	0.060	ug/L	1
bis(2-Chioroethyl)ether	111-44-4	8270E	ND		0.80	0.16	ug/L	1
2-Chloronaphthalene	91-58-7	9270⊡	ND		0.80	0.15	ug/L	1
2-Chlorophenol	95-57-8	9270E	ND		0.80	0.15	ug/L	1
4-Chlarophenyl phanyl other	7005-72-3	8270E	ND		0.80	0.18	ug/L	1
Chrysene	218-01-9	82700	ND		0.16	0.040	ug/L	1
Dibenzo(a.h)srithracene	53-70-3	82700	ND		0.16	0.040	ug/L	1
Dibenzofuran	132-64-9	8270⊡	ND		0.80	0.16	ug/L	1
3,3'-Dichlorobenzidine	91 -9 4-1	8270E	ND		4.0	0.81	ug/L	1
2.4-Dichlorophenol	120 - 83-2	8270E	ND		0.80	0.19	ug/L	1
Diethylphthalate	84-66-2	8270E	0.35	J	4.0	0.19	ug/L	1
Dimethy' phthalate	131-11-3	8270E .	ND		4.0	0.18	սց/և	1
2.4-Dimethylphenol	105-67-9	8270E	ND		0.80	0.45	սց/Լ.	1
Di-n-butyl phthalato	84-74-2	8270E	ND		4.0	0.42	ug/L	1
4,6-Dinitro-2-methylphonol	634-52-1	8270E	ND		4.0	0.89	ug/L	1
2,4-Dinitrophenal	51-28-5	8270E	ND		4.0	1.3	ug/L	1
2,4-Dinitrataluene	121-14-2	8270E	ND		1.8	0.36	ug/L	1
2,6-Dinitratoluene	606-20-2	8270E	ND		1.6	0.34	ug/L	1
Di-n-actylphthalate	117-84-0	8270E	ND		4.0	0.48	ug/L	1
bis(2-Ethylhexyl)phthalate	117-81-7	8270E	0.72	BJL	4.0	0.38	ug/L	1
Fluoranthene	206-44-0	8270E	ND		0.18	0.040	ug/=	1
Fluorene	86-73-7	8270E	ND		0.18	0.040	ug/L	1
Flexachlorobanzana	118-74-1	8270E	ND		0.80	0.15	ug/L	1
Hexachlorobutadiene	87-68-3	8270E	ND		0.80	0.17	ug/L	1
Hexachlorocydopentadiene	77-47-4	8279E	ND		4.0	1.1	ug/L	1
Hexachloroethane	67-72-1	827CE	ND		0.80	0.17	ug/L	1
Indeno(1,2,3-c,d)pyrene	193-39-5	8270E	ND		0.16	0.040	ug/L	1
Isophorone	78-59-1	8270E	ND	L	08.0	0.22	υ ợ /L	1
2-Methylnaphthalene	91-67- 8	8270E	ND		9.16	0.040	ug/L	1
2-Methylphenol	95-48-7	8270E	ND		0.80	0.21	ug/L	•
3+4-Methylphenol	10∂-44-5	8270E	ND		1.6	0.46	ug/L	•
Nephthelene	91-20-3	8270E	NĐ		0.16	0.040	ug/L	1
2-Nitroaniline	88-74-4	82705	NO.		1.6	0.66	ug/L	1
3-Nitroanil ne	99-09-2	8270E	CN		1.8	0.16	ψg/L	1
4-Nitroaniline	100-01-6	8270E	ND		1.8	1.3	ug/L	1
Nitrobenzene	98-95-3	8270E	ND		0.80	0.17	ug/l _a	1
2-Nitrophenol	88-75-5	8270E	ND		1.8	0.44	ug/l.	1
4-Nitrophenol	100-32-7	8270E	ND		4.0	2.1	ug/L	1
N-Nitrosodi-n-propylemine	821-64-7	8270E	ND	L	0.80	0.28	ug/L	1

LOQ ~ Limit of Quarktetton	B - Detacted in the method blank	F = Quantitation of compound exceeded the calibration range	5L → Jelection ∵mit	Q = Suregato falluro
ND = Not detected at on above the DL	N = Recovery is out of oftens	P = Pha RHD betwien two GC columns exceeds 40%	Ji = Estimated resurt s LCQ and ≥ DL	Lin LCS/LCSD (a) ura
II ≈ Dut of holding time	Wie Reported on wet weight basis			8 = MS/MSD failure

Page Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

¹⁰⁶ Varitaga Point Drive Wast Columbia, SC 29172 (800) 791-9700 Fax (503) 791-9111 www.pacelabs.com

Description: GW-1

Date Samp!ed:05/07/2021 1300 Data Received: 05/10/2021

Laboratory ID: WE10034-008 Matrix: Aqueous

Semivolatile Organic Compounds by GC/MS

Run	Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date Batc	ı
1	3520C	8270E		05/16/2021 1633 STM		4

Paramotor	CA\$ Number	Analytical Method	Bassile C		Di		_
	Number	Medioa	Result Q	LOG	DL	Units	Run
N-Nitrosodiphonylamine (Diphenylamine)	88-30-6	8270G	ND	0.80	0.50	ug/L	1
Pentachlorophenol	87-86- 5	8270E	ND	4.0	1.3	ug/L	1
Phonanthrene	85-01-8	8270E	ND	0.16	0.040	ug/L	1
Phenol	108-95-2	8270E	ND	0.80	0.19	ug/L	1
Py/ene	129-00-0	8270E	ND	0.16	0.040	ug/L	1
2,4,5-Trichlorophenol	95-95-4	8270E	ND	0.80	0.19	ug/L	1
2,4,6-Trichlorophonal	68-08-2	8270≘	ND	08.0	0.22	ug/L	1

Surrogate	Run 1 Acceptance Q % Recovery Limits
2-Fiverobiphenyi	მ 9 37-129
2-Fluorophenol	38 24-127
Nitrobanzene-dō	67 38-127
Phenol-d5	54 28-128
Terphenyl-d14	83 10-148
2,4,6-Tribramaphenol	52 35-144

CVAA

Run Prep Method	Analytical Method	Dilution	Analysis Date Analyst		Batch
1	7470A	1	05/13/2021 1824 CMS2	05/13/2021 122	24 92149

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Dissolved Mercury	7439-97-8	7470A	ND	0.00020	0.000091	mg/L	1

ICP-MS

Run	Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date	Batch
1	3005A	60208	1	05/13/2021 1846 BPK	05/13/2021 0401	92120
2	3005A	60208	10	05/13/2021 2007 BPK	05/13/2021 0401	92120

B	CAS	Analytical					
Parameter	Number	Method	Result Q	LOQ	DL	Units	Run
Dissolved Aluminum	7429-90-5	6020B	ND	40	10	∟g/L	1
Dissolved Antimony	7440-36-0	6020B	CM	2.0	0.50	ug/L	1
Dissolved Arsenic	7440-38-2	6020B	ND	2.0	1.3	եց/ե	1
Dissolved Barlum	7440-39-3	6020B	73	5.0	1.3	սց/Լ	1
Dissolved Cadmlum	7440-43-9	6020B	ND	0.50	0.13	را/و ب	1
Dissolved Calcium	7440-70-2	8020B	50000 S	4000	1000	ug/L	2
Dissolved Chromium	7440-47-3	8020B	ND	5.0	1.3	սգ/Լ	1
Dissolved Cobalt	7440-48-4	8020B	ND	5.0	1.3	սք/Լ	1
Dissolved Copper	7440-50-8	₹020B	ND	5.0	1.3	ug/L	1

LOG - Limit of Quantilation	Ansid bottem edilini batteleC = B	E = Quantitation of compound exceeded the calibration range.	DL = Detector High	Q = Surrogate ferure
ND = Not detected at or above the DI.	N = Recovery is out of criteria	P = The RPD between two GC columns exceeds 40%	$J = Estimated result < LOQ and > \Omega I$,	-
H = Gut of holding time	Win Reported on well weight easts.		_	S = MS/MSD fedura

Description: GW-1

Dato Sampled:05/07/2021 1300 Date Received: 05/10/2021

Laboratory ID:WE10034-006 Matrix: Aquoous

ICP-MS

	Prep Method 3005A	Analytical Method 8020B	Analysis Date Analyst 05/13/2021 1846 BPK	Batch 92120
2	3006A	6020B	05/13/2021 2007 BPK	

Parameter	CAS Number	Analytical Method	Result	Q	LOQ	DL	Units	Run
Dissolved Iron	7439-89-6	6020B	13	Ţ	50	13	пбіГ	1
Dissolved Lead	7439-92-1	6020B	ND		1.0	0.25	ug/L	1
Dissolved Magnesium	7439-95-4	6020B	6000		400	50	ug/L	1
Dissolved Manganese	7439-96-5	6020B	150		5.0	1.3	ug∕L	1
Dissolved Nickel	7440-02-0	6020B	2.0	J	5.0	1.3	ug/L	1
Dissolved Potassium	7440-99-7	6020B	5900		400	100	ug/L	1
Dissolved Selenium	7782-49-2	6020B	ND		5.0	1.3	ug/L	1
Dissolved Silver	7440-22-4	60209	GN		1.0	0.25	ug/L	1
Dissolved Sodium	7440-23-5	6020B	3400		400	150	ug/L	1
Disealved 1'hellium	7440-28-0	60203	ND		0.50	0.15	ug/L	1
Dissolved Vanedium	7440-62-2	6020B	ND		5.0	2.5	սց/ե	1
Dissolved Zinc	7440-66-6	6020B	ND		10	2.5	ug/l _a	1

LOG ~ Limit of Quantitation ND = Not pelected at or spoys the DL B = Detected in the method blank N = Receivery is and of order a

Ele Quantitation of compound exceeded the collimation range | DL - Detector IJmb ρ = The RPO between Jose GC columns expeads 40%

J=Estimated result < 10Q and $\gtrsim DL$

O - Surregate felluto I. - LOS/LOSO fallura $S = MS/MSD \ {\rm failure}$

Description: GW-2

Date Sampled:05/07/2021 1000 Date Rocelvod: 05/10/2021

Laboratory ID: WE10034-007 Matrix: Aqueous

Volatile Organic Compounds by GC/MS

Run	Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date	Batch
1	5030B	8260D	1	05/16/2021 2016 JDF	•	92459
3	5 0 30B	82600	1	05/20/2021 0254 CJI.,2		92801

Perameter	CAS Number	Analytical Method	Result	Q	LOQ	D1.	Units	Run
Acetone	67-64-1	82 6 0D	ND		20	5.0	ug/L	1
Benzene	71-43-2	8260D	ND		10	0.40	ug/L	1
Bromodichioromethene	75-27-4	82600	ND		1.0	0.40	ug/L	1
Bramolarm	75-25-2	82600	ND		1.0	0.40	ug/L	1
Bromometriane (Methyl bromide)	74-83-9	8260D	ND		2.0	0.40	ug/L	1
2-Butanone (MEK)	78-93-3	8260D	ND		10	2.0	μ <u>α</u> /L	1
Carbon disulfide	75-15-0	8260D	0.42	J	1.0	0.40	ug/L	1
Carbon tetrachloride	56-23-5	8260D	ND		1.0	0.40	ug/L	1
Chlorobenzene	108-90-7	8260D	ND		1.0	0.40	ug/L	1
Chloroethane	75-00-3	8260D	ND		2.0	0.40	ug/L	1
Chloraform	67-66-3	8260D	ND		1.0	0.40	ug/L	1
Chloromethane (Methyl chloride)	74-87-3	8280D	CN		1.0	0.50	ug/L	1
Cyclohexane	110-82-7	8280D	ND		1.0	0.40	ug/L	1
1.2-Dibromo-3-chloropropene (DBCP)	96-12-8	8260D	ND		1.0	5.40	ug/L	1
Dibromachlaromethane	124-48-1	8280D	ND		1.0	0.40	ug/L	1
1,2-Dibromoethane (EDB)	106-93-4	826 0 D	ND		1.0	0.40	ug/L	1
1,2-Dichlorobenzene	95-50-1	8260D	ND		1.0	0.40	ug/L	3
1,3-Dichlorobenzene	541-73-1	8260D	ND		1.0	0.40	ug/L	1
1,4-Dichlorobenzene	106-46-7	8260D	ND		1,0	0.40	ug/L	1
Dichlorodifluoromethane	76-71-8	8260D	ND		2,0	0.60	ug/L	1
1,1-Dichloroethane	75-34-3	82600	ND		1.0	0.40	ug/L	1
1,2-Dichloroe@jane	107-06-2	8260D	ND		1.0	0.40	ug/L	1
1,1-Dichloroethene	75-35 - 4	8260D	ND		1.0	0.40	ug/L	1
dis-1,2-Dichloroethene	156-59-2	826017	ND		1.0	0.40	ug/L	1
trans-1.2-Dichloroethene	156-60-5	8260D	ND		1.0	0.40	ug/L	1
1.2-⊃ichloropropane	7 8-87 -5	8260D	ND		1.0	0.40	ug/L	1
cis-1,3-Dichloropropene	10061-01-5	8260D	ND		1.0	0.40	ug/L	1
trans-1.3-Dichloropropene	10081-02-6	8260D	ND		1.0	0.40	ug/L	1
Ethylberizono	100-41-4	8260D	ND		1.0	0.40	ug/L	1
2-Hexanone	591-78-6	8260D	ND		10	2.0	ug/L	1
Isopropylbenzene	98-82-8	8260D	ND		1.0	0.40	ug/l.	1
Methyl acetate	79-20-9	8260D	ND		1.0	0.40	ug/L	1
Mothyl tertlary bufyl ether (MTBE)	1634-04-4	8260D	ND		1.0	0.40	ug/L	1
4-Mothyl-2-pentanone	108-10-1	8280D	ND		10	2.0	ug/L	1
Mathylcydohexane	108-87-2	8280D	ND		5.0	0.40	ug/L	1
Methylene chloride	75-3 9-2	8260D	ND		1.0	0.40	ug/L	1
Styrene	100-42-5	828CD	CN		. 1.0	0.40	ug/L	1
1,1,2,2-Tetrachloroethane	79-34-5	826CD	ND		1.0	0.40	ug/L	1
Tetrachloroethene	127-18-4	826 0 D	ND		1.0	0.40	ug/L	1
			140			V-7V	agr	'

LOC = Umit of Quantitation $ND \neq Not decected at or above the <math display="inline">CU$

H = O(t) of inabling time.

B = Detected in the injoined plank N = Recovery Is out of or terla. Wie Reported on wet weight basis. E = Quartificition of compound exconded the calloration range | DL = Defection Limit P = The RPD onlyson two GC columns exceeds 40%

 $J = \mathsf{Fatimeted} \ \mathsf{result} \land \mathsf{LOO} \ \mathsf{and} \succeq \mathsf{DL}$

Q = Surragațe fai ure z = 1.097.090 fallure 6 = M9/MSD fature

Description: GW-2

Date Sampled:05/07/2021 1000 Date Received: 05/10/2021 Laboratory ID: WE10084-007

Matrix: Aqueous

Volatile Organic Compounds by GC/MS

Run	Prep Mathod	Analytical Method		Analysis Date Analyst	Prep Date	Batch
1	5030B	82600	1	05/16/2021 2016 JDF		92459
3	5030B	826 0 F	1	05/20/2021 0254 CJL2		92881

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Unite	Run
Toluena	108-88-3	8280D	ND	1.0	0.40	ug/L	1
1.1.2-Trichloro-1.2,2-Trifluoroethene	76-13-1	826010	ND	1.0	0.42	ug/l-	1
1.2.4-Trichlorobonzene	120-82-1	8260D	N _E D	1.0	0.40	ug/L	1
1,1,1-Trichloroothane	71-55-8	8260D	ND	1.0	0.40	ug/L	1
1.1.2-Trichloroothane	79-00-5	8260D	ND	1.0	0.40	ug/L	1
Trichiaraetheno	79-01-8	8260D	ND	1.9	0.40	ug/L	1
Trichlorofluoromothane	75-89-4	8260D	ND:	1.0	0.40	ug/L	1
Vinyl chloride	75-01-4	8260D	ND	1.0	0.40	ug/L	1
Xylenes (total)	1330-20-7	82600	ND	1.0	04.0	ug/L	1

		Acceptance		cceptance	
Surrogate	1 % Rocovery	Limits Q_	% Recovery	Limits	
Bromofluorobenzeno	97	70-130	95	70-130	
1,2-Dichlercethano-d4	84	70-130	108	70-130	
Toluene-d8	96	70-130	106	70-130	

Semivolatile Organic Compounds by GC/MS

demirolatic organic compounds by corne								
Run Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date Ba	atch			
1 3520G	8270E	1	05/18/2021 1657 STM	05/13/2021 1422 92	2194			

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Acenaphthene	83-32-9	8270E	MO.	0.16	0.040	ag/L	1
Acenaphthyleno	208-96-8	8270E	NO.	0.16 .	0.040	ug/L	1
Acetophianone	98-88-2	8270E	ND	0.80	0.23	ug/L	1
Anthracene	120-12-7	8270∈	NΩ	0.16	0.040	ug/L	1
Atrazine	1812-24-9	8270E	ΝD	0.80	0.20	υg/L	1
Benzaldehyde	100-52-7	8270E	ND	4.0	0.27	ug/L	1
Benzola)anthrecene	5 6-5 5-3	8270E	ND	0.16	0.040	ug/L	1
Bonzo(a)pyrene	50-32-8	82706	ND	0.16	0.040	ug/L	1
Benzo(h)/luoranthone	205-99-2	8270E	ИD	0.16	0.040	ug/L	1
Benzo(g,h,l)perylene	191-24-2	8270E	αи	0.16	0.040	ug/L	1
Benzo(k)fluorantheno	207-08-9	8270E	ND	0.16	0.040	ug/L	1
1,1'-Biphenyl	92-52-4	8270E	ND	0.80	0.21	ug/L	1
4-Bromopheny phenyl ethor	101-55-3	8270E	ND	0.80	0.15	ug/L	1
Butyl benzyl phthalale	85 -3 8-7	8270⊡	ND	4.0	0.21	ug/L	1
Caprolactam	105-60-2	8270⊡	ND	4.0	0.71	ug/L	1
Carbazole	86-74-8	8270E	MD F	0.80	0.040	ug/L	1
bis (2-Chiora-1-methylothy.) ether	108-60-1	8270E	ND	0.80	0.17	ug/L	1
4-Chloro-3-methyl phanal	59-53-7	8270E	ND	0.80	0.26	ug/L	1

LOG - Unit of Quantilation	B = Datacted in the mathod blank	E = Quentitation of companion; exceeded the calibration rango	DL ~ Detection Limit	enulial elegenus ~ Q
Null = Not existed at or above the C .	N = Recovery is out of orderly	P = Tire RPD between two GC columns ascends 40%	J = Estimated result < LOQ and ≥ DL	, = #Q\$/#.C\$D fallure
N = Out of political free	VI ≃ Reported on with weight badia			8 - MS/MSD is lum

Date Sampled:05/07/2021 1000 Date Received: 05/10/2021

Laboratory ID: WE10034-007 Matrix: Aqueous

Semivolatile Organic Compounds by GC/MS

Run Prep Method Analytical Method Dilution Analysis Data Analyst Prep Date 1 3520C 8270E 05/16/2021 1657 STM 05/13/2021 1422 92194

Paramotor	CAS Number	Analytical Method	Result	Q	LOQ	DL	Units	Run
4-Chloroanl/ne	106-47-8	8270E	ND		0.80	0.13	ug/L	1
bis(2-Ghloroethoxy)methane	111-91-1	8270E	ND		0.80	0.060	ug/L	1
bls(2-Chlaroethyf)ether	111-44-4	8270E	ND		0.80	0.16	ug/L	1
2-Chloronaphthaleno	91-58-7	8270E	ND		0.80	0.15	ug/l,	1
2-Chlorophenol	95-57-8	8270E	ND		0.80	0.15	ug/L	1
4-Chlorophenyl phenyl ether	7005-72-3	8270E	ND		0.80	0.16	ug/L	1
Chrysene	218-01-9	8270E	ND		0.16	0.040	ug/L	ſ
Dibenzo(a,h)anthracene	53-70-3	8270E	ND		0.16	0.040	ug/L	1
Dibenzofuran	132-84-9	8270E	ND		0.80	0.16	ug/L	1
3,3'-Dichlarobenzidine	91-94-1	8270E	ND		4.0	0.81	ug/L	1
2,4-Dichloraphenol	120-83-2	8270E	ND		0.80	0.19	ug/L	1
Diethylphthalate	84-66-2	8270E	0.41	J.	4.0	0.19	ug/L	1
Dimethyl phthalate	131-11-3	8270E	ND		4.0	0.18	ug/L	1
2,4-Dimethylphenol	105-67-9	8270E	ND		0.80	0.15	ug/l.	1
Ol-r-butyl phthalate	84-74-2	8270E	ND		4.0	0.42	ug/L	1
4.6-Dinitro-2-methylphonol	534-52-1	8270E	ND		4.0	0.89	ug/L	1
2.4-Dinitrophenol	51-28-5	8 2 70E	ND		4.0	1.3	¢g/L	1
2.4-Dinitrotoluone	121-14-2	8270E	ND		1.6	0.38	ug/L	1
2,6-Dinätrotoluene	606-20-2	8270E	ND		1.6	0.34	υg/L	1
Di-n-octylphthalate	117-84-0	8270∃	ND		4.0	0.48	υg/L	1
bis(2-Ethylhexyi)phthalate	117-81-7	8270E	1.4	BJL	4.0	0.38	ug/L	1
Fluoranthone	206-44-0	8270E	ND		0.16	0.040	υg/L	1
Fluorene	88-79-7	8270E	NO.		0.18	0.040	ug/L	1
Hexachlorobenzona	118-74-1	8270E	CM		0.80	0.15	ug/L	1
Hexachlorobutadiene	87-68-3	8270E	ND		0.80	0.17	ug/L	1
Hexachlorocyclopentadlene	77-47-4	8270E	ND		4.0	1.1	ug/L	1
Hexachloroothane	67-72-1	827 0 E	ND		0.80	0.17	ug/L	1
Indono(1,2,3-c,d)pyrene	193-39-5	8270⊡	ND		0.16	0.040	ug/L	1
laophorone	78-59-1	8270E	ND	Ł	0.80	0.22	ug/L	1
2-Methylnaphthalene	91-57-6	8270E	ND		0.16	0.040	ug/L	1
2-Methylphenal	95-48-7	8270E	ND		0.80	0.21	ug/L	1
3+4-Mathylphenol	106-44-5	8270E	ND		1.6	9.48	ug/L	1
Napnthalene	91-20-3	8270E	ND		0.16	0.040	ug/L	1
2-Nitroeniline	88-74-4	8270E	ND		1.6	0.66	ug/L	1
3-Nitroaniline	99-09-2	#27DE	ND		1.6	0.15	ug/L	1
4-Nitroaniline	100-01-6	8270F	ND		1.8	1.3	ug/L	1
Nitrobenzen e	98-95-3	8270E	ND		0.80	0.17	ug/L	1
2-Nitrophenol	88-76-5	827CE	ND		1.8	0.44	ug/L	1
4-Nitrophenol	500-02-7	8270E	ND		4.0	2.1	ug/L	1
N-Nitrosodi-n-propylamine	621-64-7	8270E	ND	L	0.80	0.28	ug/L	1

LCQ = Lmit of Quantillation	
NIC = Mekalehooloof et er abessa t	-

A = Detected in the method blank

E = Quantitation of compound exceeded the calibration range: Dt = Detection Limit

Q = Surrogate failure $L \cong LGS/LGSD \ faili.rm$

H = Out of holding time

N - Recovery Is ou! of criteria Win Roughol on webweight basis

P = The RPD between two GC columns exceeds 40%.

J = Estimated result < LOQ and \geq DI

S = MS/MSD failure

¹⁰⁸ Varillagu Point Drive - West Collumbia, SQ 29172 (803) 791-9700 - Fax (803) 791-9111 - www.papelaos.com

Description: GW-2

Run Prep Method

3005A

Date Samplod:05/07/2021 1000 Date Received: 05/10/2021 Laboratory ID:**WE10034-007** Matrix: **Aquaous**

Semivolatile Organic Compounds by GC/MS

Run Prop Method 1 35200	Analytical Method 8270E	Dilution 1		s Dato Analyst 21 1667 STM	Prep 05/13/2		Batch 2 92194			
Parameter			CAS nber	Analytical Method	Rosult	Q	LOQ	DL	Units	Run
N-Nitrosodiphenylamine (Diph	nenylamine)	86-	30-6	827GE	ND		0,80	0.50	∪g/L	1
Pentachlorophenol		87-	86-5	8270E	ND		4.0	1.3	υg/L	1
Phenanthrene		85-	01-8	8270E	ND		0.16	0.040	սց/ե	1
Phenol		108-	95-2	827DE	ND		0.80	0.19	ւց/∟	1
Pyrene		1294	00-0	8270E	ND		0.16	0.040	∟ց/ L	1
2.4,5-Trichloropher.ol		95-	96-4	8270E	ND		0.80	0.19	ug/L	1
2 4,6-Trichlorophenol		88-	06-2	8270E	ND		0.80	0.22	ug/L	1
Surrogate	a %i	Run 1 Recovery	Acceptan Limits	CO .						
2-Fluorobiphenyl	<u> </u>	71	37-129							
2-Fluorephenol		33	24-127							
Nitrobenzene-d5		70	38-127							
Phenol-d5		61	26-128							
Terphenyl-d' 4		68	10-148							
2,4,6-Tribromophenal		57	35-144							
			C۷	/AA						
Run Prop Method	Analytical Method 7470A	Dilution 1	_	s Date Analyst 21 1827 CMS2	Prep 05/13/2		Bat ch 4 92149			
Paramotor			CA5 mber	Analytical Method	Result	a	LOQ	DL	Units	Run
Dissolved Mercury	-	7439-	97-6	7470A	ND	C.	.00020	0.000091	mg/L	1

п		Р-	10.0	c
ш	U		IY	J

Analysis Date Analyst

05/13/2021 1923 BPK

Prep Date

05/13/2021 0401 92120

2	3005A	8020B	10 05/13	/2021 2045 BPK	05/13/2021	0401 92120			
Parame		· -	CAS Number	Analytical Method	Result Q	LOG	DL	Units	Run
Dissolv	ed Aluminum		7429-90-5	6020B	170	40	10	ւն∖լ	1
Dissolv	ed Antimony		7440-36-0	6020B	1.1 J	2.0	0.50	цд/L	1
	ed Arsenio		7440-38-2	6020B	ND	2.0	1.3	ug/L	1
Dissolv	od Barlum		7440-39-3	6020B	49	5.0	1.3	սց/ե	1
			_4 4.		4.00	0.50	5.45		4

Dissolved Antimony	/44U-36-U	6UZVB	1.1 3	2.0	U.OU	ng, n	,
Dissolved Arsenic	7440-38-2	6020B	ND	2.0	1.3	ug/L	1
Dissolvod Barlum	7440-39-3	6020B	49	5.0	1.3	ոճչբ	1
Dissolved Cadmium	7440-43-9	6020B	ND	0.50	0.13	ug/L	1
Dissolved Calcium	7 44 0-70-2	602 0 B	87000	4000	1000	ug/L	2
Dissolved Chromium	7440-47-3	6020B	ND	5.0	1.3	ug/L	1
Dissolved Cobalt	7440-48-4	6020B	3.3 J	5.0	1.3	ugiL	1
Dissolved Copper	7440-50-8	60203	ND	5.0	1.3	ug/ <u>*</u> _	1

				·
LCO - Limit of Quantiletion		F = Quarification of compound exceeded the callbridge	DL = Celection Limit	 G = Sunogate failure
ND = Nst cotopical at or above the DL	N = Recovery Is out of criteria	면 ~ The RPD belwoon loo GC calumns exceeds 40%	J = Rejinsated resuβ < LOQ and > DU	1. = LCS4.CSD (a) u/6
II = Out of noding lime	Wire Reparted on wet weight basis			8 = MS/MSD feiters

Analytical Method Dilution

8020B

1

Description: GW-2

Date Sampled:05/07/2021 1000 Date Recolved:05/10/2021 Laboratory ID: WE10034-007
Matrix: Aqueous

ICP-MS

Run	Prep Method	Analytical Method	Dilution	Analysis Dato Analyst	Prep Date	Batch
1	3005A	6020B		05/13/2021 1923 BPK		92120
2	3005A	6020B	10	05/13/2021 2045 BPK	05/13/2021 0401	92120

CAS Number	Analytical Method	Result Ç	tog	ÐL	Units	Run
7439-89-6	60208	1600	50	13	ug/L	1
7439-92-1	6020B	ND	1.0	0.25	ug/L	1
7439-95-4	6020B	24000	400	50		1
7439-96-5	6020B	1100	50		_	2
7440-02-0	6020B	1.B J	5,0			1
7440-09-7	6020B	4400	400	100	•	1
7782-49-2	6020B	ND	5.0	1.3	-	ſ
7440-22-4	6020B	ND	1.0	0.25		1
7440-23-5	6020B	5700	400	150	-	1
7440-28-0	602 0 B	NO.	0.50	0.15	-	1
7440-8 2 -2	6020B	ND	5.0	2.5		1
7440-66-6	8020B	ND	10	2.5	ug/L	1
	Number 7439-89-6 7439-92-1 7439-95-4 7439-96-5 7440-02-0 7440-92-7 7782-49-2 7440-22-4 7440-23-5 7440-82-0	Number Method 7439-89-6 60208 7439-92-1 60208 7439-95-4 60208 7439-96-5 60208 7440-02-0 60208 7440-09-7 60208 7782-49-2 60208 7440-22-4 60208 7440-23-5 60208 7440-28-0 60208 7440-52-2 60208	Number Method Result G 7439-89-6 6020B 1600 7439-92-1 6020B ND 7439-95-4 6020B 24000 7439-96-5 6020B 1100 7440-02-0 6020B 1.8 J 7440-09-7 6020B 4400 7782-49-2 6020B ND 7440-22-4 6020B ND 7440-23-5 6020B 5700 7440-28-0 6020B NO 7440-62-2 6020B NO	Number Method Result Q LOQ 7439-89-6 60208 1600 50 7439-92-1 60208 NID 1.0 7439-95-4 60208 24000 400 7439-96-5 60208 1100 50 7440-02-0 60208 1.8 J 5.0 7440-09-7 60208 4400 400 7782-49-2 60208 ND 5.0 7440-22-4 60208 ND 1.0 7440-23-5 60208 5700 400 7440-28-0 6020B NO 0.50 7440-82-2 6020B NO 0.50	Number Method Result Q LOQ DL 7439-89-6 6020B 1600 50 13 7439-92-1 6020B NID 1.0 0.25 7439-95-4 6020B 24000 400 50 7439-96-5 6020B 1100 50 13 7440-02-0 6020B 1.8 J 5.0 1.3 7440-09-7 6020B 4400 400 100 7782-49-2 6020B ND 5.0 1.3 7440-22-4 6020B ND 1.0 0.25 7440-23-5 6020B 5700 400 150 7440-28-0 6020B NO 0.50 0.15 7440-62-2 6020B NO 5.0 2.5	Number Method Result Q LOQ DL Units 7439-89-6 60208 1600 50 13 ug/L 7439-92-1 60208 NID 1.0 0.25 ug/L 7439-95-4 60208 24000 400 50 ug/L 7439-96-5 60208 1100 50 13 ug/L 7440-02-0 60208 1.8 J 5.0 1.3 ug/L 7440-09-7 60208 4400 400 100 ug/L 7782-49-2 60208 ND 5.0 1.3 ug/L 7440-22-4 60208 ND 1.0 0.25 ug/L 7440-23-5 60208 5700 400 150 ug/L 7440-82-0 60208 NO 0.50 0.15 ug/L 7440-62-2 60208 NO 5.0 2.5 ug/L

LOQ = Limit of Quantiletten
NO = Not detected at or above the DL
H = Out of holding time:

Bin Detected in the mathod blank.
N = Recovery is out of criteria.
Win Reported on web weight basis.

E = Quantitation of exemptound extended the sellbration range | DL = Defection Units
Pin The RPD between two 3C columns exceeds 40% | J = Settmeted results

J = SetImeted result < LCQ and ≥ DL

O = Surrogate feilure L = LOS/LOSO fail ure S = MS/MSD fail, ro

Description: GW-3

Date Sampled:05/07/2021 1130 Date Received:05/10/2021 Laboratory ID:WE10034-008
Matrix: Aqueous

Volatile Organic Compounds by GC/MS

Run	Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date	Batch
1	5030B	8260D	1	06/16/2021 2038 JDF		92459
3	5030B	8200D	1	06/20/2021 0319 CJL2		92881

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Acatono	<u>87-64-1</u>	82600	ND	20	5.0	ug/L	1
Benzanc	71-43-2	8260D	ND	1.0	0.40	ug/L	î
Bromedichloromethane	75-27-4	8260D	ND	1.0	0.40	ug/L	1
Bromoform	75-25-2	82 6 0D	ND	1.0	0.40	ug/L	1
Bromomethane (Methyl bromide)	74-83-9	8260D	ND	2.0	0.40	ug/L	1
2-Butenone (MEK)	78-93-3	8260D	NO	10	2.0	ug/L	1
Carnon disuifido	75-15-0	8260D	NΘ	1.0	0.40	ug/L	1
Carbon tetrachioride	56-23-5	8260D	Ип	1.0	0.40	ug/L	1
Chloroberzene	108-90-7	8260D	Ип	1.0	0.40	ug/L	1
Chloroethane	75- 90-3	8260D	ND	2.0	0.40	ug/L	1
Chlaroform	67-86-3	8260D	ND	1.0	0.40	ug/L	1
Chloromethane (Mothyl chloride)	74-87-3	82600	ND	1.0	0.50	ug/L	1
Cyclohexane	110-82-7	82600	ND	1.0	0.40	ug/L	1
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	8260D	ND	1.0	0.40	ug/L	1
Digromochloromothane	124-49-1	8260D	ND	1.0	0.40	ug/L	1
1,2-Dibromoethane (EDB)	106-93-4	8260D	ИD	1.0	0.40	ug/L	1
1,2-Djdhlorobonzene	95-50-1	8260D	ND	1.0	0.40	ug/L	3
1,3-Dichlorobenzono	. 541-73-1	8260D	ND	1.0	0.40	ug/L	1
1,4-Dichlorobenzona	106-48-7	82 6 3D	MD	1.0	0.40	ug/L	1
Dichlorodifluoromothane	75-71-8	8260D	ND	2.0	0.60	ug/L	1
1,1-Dichloroelhano	75-34-3	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichloroethane	107-36-2	826010	ND	1.0	0.40	ug/L	1
1,1-Dichloroethene	75-35-4	82800	ND	1.0	0.40	ug/L	1
ds-1,2-Dichloroethene	156-59-2	8 28 010	ND	1.0	0.40	ug/L	1
trans-1,2-Dichloroethene	156-80-5	82800	ND	1.0	0.40	ug/L	1
1,2-Dtchloropropane	78-87-5	8260D	CN	1.0	0.40	ug/L	1
dis-1,3-Dichloropropene	10061-01-5	8260D	ND	1.0	0.40	ug/L	.1
trans-1,3-Dichloropropene	10061-02-6	8260D	ND	1.0	0.40	ug/L	1
Ethylbenzene	100-41-4	8260D	ND	1.0	0.40	ug/L	1
2-l-lexanone	591-78-8	8260D	ND	10	2.0	ug/L	1
Isapropylbenzene	98-82-8	8260D	ND	1.0	0.40	ug/L	1
Methyl acetate	79-20-9	82600	ND	1.0	0.40	υg/L	1
Methyl tortary butyl ether (MCB≅)	1634-04-4	82600	ND	1.0	0.40	ug/L	1
4-Methyl-2-pontanone	108-10-1	8260D	ND	10	2.0	ug/L	1
Methylcyclohexane	108-87-2	8260D	ИD	6.0	0.40	ug/L	1
Methylene chladdo	75-09-2	8260D	ИD	1.0	0.40	ug/L	1
Styrene	100-42-5	8260D	ND	1.0	C.41	ug/L	1
1,1,2,2-Tetrachloroethane	79-34-5	8260D	ND	1.0	0.40	ug/L	1
Tetrachloroethene	127-18-4	8260D	ND	1.0	0.40	ug/L	1

		<u></u>		
LOG = Unit of Quantitation	B - Detected in the malhac alank	□ ~ Quantitation of compound executed the callaration range.	DU = Deposition Limit	Q = Sunegate (allure
ND = Not released at or appya the DI	N = Recovery is out of criteria.	P = The RPD believe h two GC columns excoods 40%	J ≃ Estimated result < 1 QQ and ≥ DL	L = L08/L08D fa lufu
H = Out of holding line	Wie Raported on wet weight basis			SIR MS/MSD fallure

Description: GW-3

Date Sampled:05/07/2021 1130 Date Received:05/10/2021 Laboratory ID: WE10034-008

Matrix: Aqueous

Volatile Organic Compounds by GC/MS

Run	Prop Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date	Batch
1	5030B	8280D	1	05/16/2021 2038 JDF		92459
3	5030B	82600	1	05/20/2021 0019 CJL2		92881

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Toluene	108-88-3	8260D	ND	1.0	0.40	цg/l.	1
1,1,2-Trichlaro-1,2,2-Trifluoroethane	78-13-1	8260D	ND	1.0	0.42	ug/L	1
1.2,4-Tifchlarobenzene	120-82-1	8260D	ND	1.0	0.40	ug/L	1
1,1,1-Trichloroethane	71-55-6	826013	ND	1.0	0.40	ug/L	1
1,1,2-Trichloroethane	79-00 - 6	82600	ND	1.0	0.40	ug/L	1
Trichlaroethene	79 - 01-8	8260D	ND	1.0	0.40	ug/L	1
Trichlorofluoromothane	75-69-4	8260D	ND	1.0	0.40	ug/L	1
Vinyl chlorido	75-D1-4	8260D	ND	1.0	0.40	ug/l.	1
Xylenes (total)	1330-20-7	8260D	ND	1.0	0.40	ug/l	1

Surrogate	Q	Run 1 / % Recovery	Acceptance Limits	Q	Run 3 A % Recovery	loceptance Limits	
B/omofluorobenzene		102	70-130		102	70-130	
1,2-Dichloroethane-d4		88	70-130		£10	70-130	
Taluene-d8		99	70-130		109	70-130	

Semivolatile Organic Compounds by GC/MS

								
Run	Prop Method	Analytical Method	Dilution	Analysis Date Analys	t Prep	Date	Batch	
1	3520C	8270E	1	05/16/2021 1722 STM	05/13/2	2021 1422	92194	

Parameter	CAS Number	Analytical Method	Result (a Loa	DL	Units	Run
Acenaphthene	83-32-9	8270E	ON	0.18	0.040	ug/L	1
Acenaphthyleno	208-96-8	8270E	ND	0.16	0.040	ug/L	1
Acetophenone	98-86-2	8270E	ND	0.80	0.23	ug/L	1
Anthraceno	120-12-7	8270E	ND	0.16	0.040	ug/l.,	1
Atrazino	1912-24-9	8270⊡	ND	0.80	0.20	ug/L	1
Bonzaldchyde	100-52-7	8270E	ND	4.0	0.27	ug/L	1
Benzo(a)anthracene	56-55-3	8 2 70E	ND	0.16	0.040	ug/L	1
Benzo(a)pyrene	50-32-8	8270년	ND	0.16	0.040	ug/L	1
Borzo(b)fluoranthene	205-99-2	8270E	ND	0.16	0.040	ug/L	1
Benzo(g,h,i)perylene	191-24-2	8270E	ND	0.16	0.040	ug/L	1
Benzo(k)fluoranthene	207-08-9	8270E	ND	0.16	0.040	ug/L	1
1,1-Bløhenyl	92-52-4	8270E	ND	08.0	0.21	ug/L	1
4-Bromophenyl phenyl othor	101-55-3	8270F	ND	0.80	0.15	ug/L	1
Butyl benzyl phthalate	85-68-7	8270E	ND	4.0	0.21	ug/L	1
Caprolactam	105 - 60-2	8270E	ND	4.0	0.71	ug/L	1
Carbazole	86-74-8	8270E	ND L	0.80	0.040	ug/L	1
bia (2-Chloro-1-methylethy!) ethor	108 -6 0-1	8270E	ND	08.0	0.17	ag/L	1
4-Chloro-3-methyl phenol	59-50-7	8270E	ND	0.80	0.26	ug/L	1

I.QQ =mll of Quantitation	B = Detected in the ninthac blank	E = Quantitation of compound investeded the calibration range	DL = Detection Limit	Q ≃ Surregate fallura
NC = Not detected at or above the DC	N = Recovery is out of criteria.	P = Trie RPD brilyson two GC columns exceede 40%	J = Estimoled result < LOQ and > DL	L = LCS/LCSD fallure
H = Out of holding time	Wi≊ Reported on well weight basis			S = MS/MSO failure

Pace Analytical Services, LLO (formerly Sheaty Environmental Services, Inc.)

¹⁸⁶ Vantage Point Drive - West Columbia, SC 29172 (803) 791-9700 - Fax (903) 791-9111 - www.papelabs.com

Description: GW-3

Date Sampled:05/07/2021 1180 Date Received: 05/10/2021

Laboratory ID: WE10034-008 Matrix: Aqueous

Semivolatile Organic Compounds by GC/MS

Run	Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prop Date Batch
1	3520C	8270E	1	06/16/2021 1722 STM	05/13/2021 1422 92194

Parameter	CAS Number	Analytical Method	Result	Q	LOQ	ĎL	Units	Run
4-Chloroanillne	106-47-8	8270E	ND		08.0	0.13	ug/L	_ 1
bls{2-Chloroethoxy}methane	111-91-1	8270E	ND		0.80	0.060	ug/L	1
bls(2-Chloroethyi)ether	111-44-4	8270E	CN		0.80	0.16	ug/L	1
2-Chloronaphthalene	91-58-7	8270E	ND		0.80	0.15	ug/L	1
2-Chlorophonol	95-57-8	8270E	ND		0.80	C.16	ug/L	1
4-Chlorophony! phenyl ether	7005-72-3	8270E	ND		0.80	0.16	ug/L	1
Chrysena	218-01-9	8270E	ND		0.16	0.040	ug/L	1
Dibenzo(a,h)anthracene	53-70-3	8270E	ND		0.16	0.040	ug/L	1
Olbenzofuran	132-64-9	8270E	ND		0.80	0.16	ug/L	1
3,3'-Dichlorobonzidine	91-94-1	8270E	ND		4.0	0.81	ug/L	1
2,4-Dichtorophonol	1 2 0-83-2	8270E	ND		0.80	0.19	ug/L	1
Diethylphthalate	. 84-88-2	8270E	ND		4.0	0.19	ug/L	1
Dimethyl phthalate	131-11-9	8270E	ND		4.0	0.18	ug/L	1
2,4-Dimethylphanol	105-67-9	8270E	ND		0.80	0.15	ug/L	1
Dl-n-buty: phthalate	84-74-2	8270E	ND		4.0	0.42	ug/L	•
4,6-Dinitro-2-methylphenol	534-52-1	8270E	ND		4.0	0.89	ug/L	•
2,4-Din'trophenol	51-28-5	8270E	ND		4.0	1.3	ug/L	1
2,4-Dinitrotoluene	121-14-2	8270E	ND		1.6	0.36	ug/L	1
2,8-Dinitrotoluene	608-20-2	8270E	ND		1.6	0.34	ug/L	1
Di-n-octylphthalate	117-84-0	8270E	ND		4.0	0.48	ug/L	1
bis(2-Ethylhexyl)phthalete	117-81-7	8270E	0.70	⊟JL	4.0	0.38	ug/L	1
Fluoranthono	206-44-0	8270E	ND		0.16	0.040	ug/L	1
Fluorene	86-73-7	8270E	ND		0.16	0.040	ug/L	1
Hexachlorobenzene	118-74-1	827UE	ND		0.80	0.15	ug/L	1
Hexachlorobutadiene	87-66 - 3	8270E	ND		0.80	0.17	ug/L	1
Hexachlorocyclopentadiene	. 77-47-4	8270F.	ΝĐ		4.0	1.1	ug/L	1
Hexachloroethane	87-72-1	8270E	ND		0.80	0.17	ug/L	1
Indeno(1,2,3-c.d)pyrene	193-39-5	8270E	ND		0.16	0.040	ug/L	1
Isapharona	78-59-1	8270E	ND	L	0.80	0.22	ug/L	1
2-Mathylnaphthalene	91-57-6	8270E	ND		0.16	0.040	ug/L	1
2-Methylphenol	96-48-7	8270E	ND		0.80	0.21	ug/L	1
3+4-Methylphenol	106-44-5	8270E	ND		1.6	0.46	ug/L	1
Naphthalene	91-20-3	8270E	ND		0.16	0.040	ug/L	1
2-Nitroanline	88-74-4	8270E	ND		1.6	0.66	ug/L	1
3-Nitroanline	99-09-2	8270E	MI3		1.6	0.15	ug/L	1
4-Nitroanilino	100-01-მ	8270E	ND		1.6	1.3	ug/L	1
Nitrobenzene	98-95-3	8270E	ND		0.80	0.17	ug/L	1
2-Nitrophenol	88-75-5	82 70 E	ND		1.6	0.44	ug/L	1
4-Nitrophenol	100-02-7	8270⊡	ND		4.0	2.1	ug/L	1
N-Nitrosodi-n-prapylamine	621-64-7	8270E	ND		0.80	0.28	ug/L	1

				•
LOO = Umit of Quaplitation	B = Detected in the mothed Mark	E = Quartitation of compound exceeded the callbration range	(a) = Bottolion Limit	Q = Surragate failure
ND - Not detected at an approxime DL	Nin Recovery is but of criteria	P = The RPD between two OC columns exceeds 40%	a - Eatimated result < LCQ and ≥ DL	L = £08/L089 faiture
H = Qul of he ding lime	W = Reported on west weight basis			S = MS/MSD failure

Pace Analytical Services, LLO (formarly Snealy Environmental Services, Inc.)
108 Vantage Point Drive West Columbia, SC 29172 (803) 791-9700 Fax (803) 791-9111 www.pscelaba.com

Description: GW-3

Date Sampled:05/07/2021 1130 Date Received: 05/10/2021

Laboratory ID:WE10084-008

Matrix: Aqueous

Semivolatile	Organic Com	pounds by	y GC/MS

Run	Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date	Batch
1	3520C	827CE	1	05/16/2021 1722 STM	05/13/2021 1422 9	92194

Parameter	GAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
N-Nitrosodipherylemine (Diphenylamine)	86-30-8	8270E	ND	0.80	0.50	ug/L	1
Pentachlarophenol	87-86-5	8270E	NI.3	4.0	1.3	ug/L	1
Phonanthrene	85-01-8	8270E	ND	0.16	0.043	ug/L	1
Phenol	108-96-2	8270E	ND	0.80	0.19	ug/L	1
Pyrene	129-00-0	8270E	ND	0.16	0.040	ug/L	1
2,4,5-Trichlorophenal	95-95-4	8270E	ND	0.80	0.19	μg/L	1
2,4,6-Trichlorophenal	88-06-2	8270E	ND	0.80	0.22	∪g/L	1

Surrogate Q	Run 1 / % Recovery	Acceptance Limits
2-Fluorobiphenyl	70	37-129
2-Fluorophenol	40	24-127
Nitrobenzene-d5	68	38-127
Phenol-d5	54	28-128
Tarphenyl-d14	74	10-148
2,4,8-Tribromophanol	55	35-144

CVAA

Run Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date	Batch
1	7470A	1	05/13/2021 1840 CMS2	05/13/2021 1224	92149

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Dissolved Mercury	7439-97-6	7470A	ND	0.00020	0.000091	mg/L	1

ICP-MS

Run	Prep Method	Analytical Method	Dilution	Analysis Date Ana	alyst	Prep Date	Batch
1	3005A	6020B	1	05/13/2021 1930 BF	PK (05/13/2021 0401	92120
2	3005A	8020B	10	05/13/2021 2052 BF	PK (05/13/2021 0401	92120

Parameter	CAS Number	Analytical Method	Result	Q	LOQ	DĻ	Units	Run
Dissolved Aluminum	7429-90-5	8020B	51		40	10	ug/L	1
Dissolved Antimony	7440-36-0	6020B	0.80	J	2.0	0.50	ug/L	1
Dissolved Arsenic	7440-38-2	8020B	ND		2.0	1.3	ug/L	1
Dissolved Barlum	7440-39-3	6020B	120		5.0	1.3	u g /L	1
Dissolved Cadmlum	7440-43-9	60208	ND		0.50	0.13	ug/t.	1
Dissolved Calcium	7440-70-2	€020B	120000		4000	1000	ug/L	2
Dissolved Chromium	7440-47-3	60208	ND		5.0	1.3	ug/L	1
Dissolved Cobalt	7440-48-4	6020B	ND		5.0	1.3	ug/L	1
Dissolved Copper	7440-50-8	6020B	1.6	J	5.0	1.3	μg/L	1

LOC = Limit of Quartifation	B = Datectad in the mailted trank	E = Quantitation of compound exceeded the calibration range.	DL - Celegion Limit	Q = Sumogere fellure
NB = Not dotested at on above the DL	N = Recovery is out of criter a	P = The RPD between two QC columns expects 40%	J = Estimated result < LCQ and > Dt.	L = LC8/LC8D fallure
H = Out of halping time	Win Reported on wet weight basis		· -	S = MS/MSD failurs

Description: GW-3

Date Sampled:05/07/2021 1130

Date Received: 05/10/2021

Laboratory ID: WE10034-008 Matrix: Aqueous

ICP-MS

				101 1110		
Run	Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prop Date	Batch
1	3005A	6020B	1	05/13/2021 1930 BPK	05/13/2021 0401	92120
2	3005A	6020B	10	05/13/2021 2052 BPK	05/13/2021 0401	92120

Parameter	CAS Number	Analytical Method	Result Q	LOQ	ÐL	Units	Run
Dissolved Iron	7439-89-6	6020B	110	50	13	rig/L	<u> </u>
Dissolved Lead	7439-92-1	60203	ND	1.0	0.25	ug/L	1
Dissolvod Magnesium	7439-95-4	6020B	14000	400	50	ug/L	1
Dissolved Mangenese	7439-96-5	6020B	160	5.0	1.3	ug/L	1
Dissolved Nickel	7440-02-0	6020B	13	5.0	1.3	ug/L	1.
Dissolved Potassium	7440-09-7	6020B	7900	400	100	ug/L	1
Dissolved Selenium	7782-49-2	802CB	ND	5.0	1.3	ug/L	1
Dissolved Silver	7440-22-4	6020B	ND	1.0	0.25	ug/L	1
Dissolved Sedium	7440-23-5	6020B	4.200	400	150	ug/L	1
Dissolved Thallium	7449-28-0	6020B	8D	0.50	0.15	ψg/L	1
Dissolved Vanadium /	7440-62-2	6020B	6.9	5.0	2.5	ug/L	1
Dissolvad Zinc	7440-66-6	6020B	ND	10	2.5	ψg/L	1

LOQ = Hmit of Quantillation ND ~ Not detected at or above the DL. $B\cong \mathsf{Datacted}$ in the motional alank

E = Quantitation of compound expended line datibration range [13] = Datantion Until

Q = Surrogato feilure

H=0.05 of the diagrams

N = Recovery is out of or terisWie Reported on wollwoight basis P = The RPB between two CC columns exceeds 40%

 $J \cong Estimated result < 100 \text{ and } \cong DL$

Description: GW-4

Date Sampled: 05/07/2021 1220 Date Received: 05/10/2021

Laboratory (D: WE10034-009

Matrix: Aqueous

Volatile Organic Compounds by GC/MS

Run	Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date	Batch
1	5030B	82600	1	05/16/2021 2101 JDF	•	92459
3	5030B	82600	1	05/20/2021 0344 CJL2		92881

Parameter	CAS Number	Analytical Method	Rosult Q	LOQ	DL	Units	Run
Acelone	67-64-1	8260D	ND	20	5.0	ug/l.	1
Benzene	71-43-2	826 0 D	ND	1.0	0.40	ug/L	1
Bromod/chloromethane	75-27-4	8260D	ND	1.0	0.40	ug/L	1
Bromoform	75-25-2	8260D	ND	1.0	0.40	ug/L	1
Bromomethane (Mathyl bromide)	74-83-9	82800	ND	2.0	0.40	ug/L	1
2-Butanone (MEK)	78- 9 3-3	82800	CM	10	2.0	ug/L	1
Carbon disclfide	76-15-0	8230D	ND	1.0	0.40	սց/Լ	1
Carbon tetrachloride	56-23-5	8260D	ND	1.0	0.40	ug/l.	1
Chlorobenzene	108-90-7	8260D	ND	1.0	0.40	ug/L	1
Chloroethane	76-00-3	8260D	ND	2.0	0.40	ug/L	1
Chloroform	67-66-3	8260D	ND	1.0	0.40	ug/L	1
Chloromethane (Methylichlor/de)	74-87-3	8280D	NI	1.0	0.50	ug/L	1
Cyclohexane	110-82-7	8260D	ND	1.0	0.40	ug/L	1
1.2-Dibromo-3-chforopropane (DBCP)	96-12-8	8260D	ND	1.0	0.40	ug/L	1
Dibromochloromethane	124-48-1	8260D	ND	1.0	0.40	ug/L	1
1.2-Dibromoelhane (EDB)	106-93-4	82 600	ND	1.0	0.40	ug/L	1
1,2-Dichlarobenzene	95-50-1	8260D	ND	1.0	0.40	ug/L	3
1,3-Dichlorobenzene	541-73-1	\$260D	ND	1.0	0.40	ug/L	1
1,4-Dichrorobenzene	106-46-7	8260D	ND	1.0	0.40	ug/L	1
Dichlorodifluoromethane	75-71-8	8260D	ND	2.0	0.60	ug/L	1
1,1-Dichloroethane	75-34-3	8260D	ND	1.0	0.40	ug/L	1
1,2-Dichloroethene	107-06-2	8260D	ND	1.0	0.40	ug/L	
1,1-Dichlomethene	75-3 5 -4	82800	ND	1.0	0.40	ug/L	1
cls-1,2-Olchloroethene	156-59-2	82800	· ND	1.0	0.40	ug/L	1
trans-1,2-Dichloroethene	156-60-5	8280D	ND	1.0	0.40	ug/L	1
1,2-Dichloropropane	78-87 - 5	8280D	ND	1.0	0.40	ug/L	1
cis-1,3-Dichloropropene	10061-01-5	8260D	ND	1.0	0.40	ug/L	1
trans-1.3-Dichloropropono	10061-02-ଶ	8260D	ND	1.0	0.40	ug/l.	1
Ethylbenzene	100-41-4	8260D	ND	1.0	0.40	ug/L	1
2-Hexanone	591.78-6	8260D	ND	10	2.0	ug/L	1
laopropylbenzene	98-82-8	8260D	ND	1.0	0.40	ug/L	1
Methyl acetate	79-20-9	8260D	ND	1.0	0.40	աց/ե,	1
Methyl tertiary butyl other (MTBE)	1634-04-4	8260D	ND	1.0	0.40	ug/L	1
4-Methyl-2-pontanone	108-10-1	8260D	ND	10	2,0	υg/L	1
Methylcyclohoxana	108-87-2	82600	ND	5.0	0.40	ug/L	1
Methylana chloride	75-09-2	8260D	NID	1.0	0.40	ug/L	1
Styreno	100-42-5	8260D	ND	1.0	0.41	ug/L	1
1,1 2,2-Tetrachioraethane	79-34-5	8260D	ND	1.0	0.40	ug/L	1
Tetrach!proethene	127-18-4	82600	ND	1.0	0.40	ug/L	1

LOC = Limit of Quantitation.	H = Deserved to the second stock	E = O ===H=d== =d ======= 1		
EDG - Eran di QQQL (ALQ).	B = Detected in the megnod plank	Fig. Quantifiction of compound expected the calibration range.	St - Detection Limit	Q ≃ Surragate failung
ND = Not detacted at or above the Du	N = Recovery is out of outarie	P = The RPC perwoon two GC objumite accepte 40%	= Extinated result < LOQ and > DL	L = 109/L090 fellura
H = Cut of halding time	Will Reported on well weight basis			
	IT - NOVO LEG OF HOLITON LEGIS			8 = MS/MSD fature

Description: GW-4

Date Sampled:05/07/2021 1220 Date Received: 05/10/2021

Laboratory ID:WE10034-009

Matrix: **Aqueous**

Volatile Organic Compounds by GC/MS

Run	Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date	Batch
1	6030B	8260D	1	05/16/2021 2101 JDF		92459
Э	6030B	82 6 0D	1	05/20/2021 0344 CJL/2		92881

Parameter	ÇAS Number	Analytical Mothod	Result Q	LOQ	DL _	Units	Run
Tg:uene	108-88-3	8260D	ND.	1.0	0.40	ug/L	1
1.1,2-Trichloro-1,2,2-Trifluoroethane	76-13-1	8260D	ИЭ	1.0	0.42	ug/L	1
1.2.4-Trichlorobenzena	120-82-1	8260D	ND	1.0	0.49	ug/L	1
1.1.1-Trichloroethane	71-55-8	8260D	ND	1.0	0.40	ug/L	1
1.1.2-Trichloroe;hene	79-00-5	8260D	ND	1.0	0.40	ug/L	1
Trichloroethene	79-01-6	82G0D	ND	1.0	0.40	ug/L	1
Trichlorofluorumathana	75-69-4	8260D	ND	1.0	0.40	ug/L	1
Vinyl chloride	75-01-4	8260D	ND	1.0	0.40	ug/L	1
Xylenes (total)	1330-20-7	8260D	ND	1.G	0.40	ug/L	1

Surrogate	Q	Run 1 % Recovery	Acceptance Limits	Q	Run 3 A % Recovery	cceptance Limits	
Bromofluorobanzene	-	96	70-130		103	70-130	
1,2-Dichlorgethane-d4		88	70-130		111	70-130	
Toluene-d8		96	70-130		110	70-130	

Semivolatile Organic Compounds by GC/MS

genitoratic organic compounds by earms								
Run	Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prop Date Bat	:		
1	3520C	8270E	1	05/18/2021 1746 STM	05/13/2021 1422 921	94		

							_
Parametor	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Acenaphthene	83-32-9	8270E	ЙÞ	0.16	0.040	ug/L	1
Acenaphthylene	208-96-8	8270E	ND	0.16	0.040	ug/L	1
Acetophenone	98-86-2	8270E	ND	08.0	0.23	ug/L	1
Anthracene	120-12-7	8270E	ND	0.16	0.040	ug/L	1
Atrazine	1912-24-9	8270E	ND	0.80	0.20	ug/L	1
Benzaldehyde	100-52-7	8270E	ND	4.0	0.27	ug/L	1
Benzo(a)anthracere	66-55-3	8270E	ND	0.18	0.040	ug/L	1
Benzo(a)pyrene	50-32-8	8270E	ND	0.18	0.040	ug/L	1
Banzo(b)fluoranthene	205-99-2	8270E	ND	0.18	0.040	ug/L	1
Benzo(g,h,i)perylene	1 9 1-24-2	8270E	ND	0.18	0.040	ug/L	1
Bonzo(k)fluoranthene	207-08-9	8270⊡	ND	0.16	0.040	ug/L	1
1,1'-Biphenyl	92-62-4	8270E	ND	08.0	0.21	ag/L	1
4-Bromophenyl phenyl ether	101-55-3	8270⊑	CN	0.80	0.15	ug/L	1
Buty benzyl phthalate	85-68-7	8270E	CN	4.0	0.21	ug/L	1
Gaprolactam	105-60-2	8270E	GM	4.0	0.71	ug/L	1
Carbazole	86-74-8	8270E	ND L	0.80	0.040	ug/L	1
bls (2-Chloro-1-methylethyl) ether	108-60-1	8270E	ND	3.80	3.17	ug/L	1
4-Chloro-3-methyl phenol	59-50-7	8270E	ND	₽.80	0.26	ug/L	1

I.OO = Limit of Quantitation	B = Bullegled in the method plank	Z = Quanifiation of compound exapenced the calleration range	Dr. = Defection Limit	Q – Surrageta fallura
ND 4 Not detected at onabove the Du	N = Recovery is quit of or letta	P = The RPD between two CC columns exceeds 40%	J ≃ Eatimated result < LOQ and ≥ DL	L=108/ QSD failure
	W = Reported on wat weight basis			S - M9/M3D fallura
H = Out of halding time	At a trabatted oil wat we do now as			

Description: GW-4

Date Sampled:05/07/2021 1220 Date Received: 05/10/2021

Laboratory ID:WE10034-009 Matrix: Aqueous

Semivolatile Organic Compounds by GC/MS

Run Prop Method Analytical Method Dilution Analysis Date Analyst Prop Date 3520C 8270E 05/16/2021 1746 STM 05/19/2021 1422 92194

Parameter	CAS Number	Analytical Method	Result	G .	LOQ	DL	Units	Run
4-Ch!oroaniline	106-47-8	8270F.	ND		0.80	0 13	ug/L	1
bis(2-Chloroethoxy)methane	111-91-1	8270E	ND		0.80	0.060	ug/L	1
bis(2-Chlorcethyi)ether	111-44-4	8270E	ND		0.80	0.16	ug/L	1
2-Chloronaphthalene	91-58-7	8270E	NO		0.80	0.15	ug/L	1
2-Chlorophenol	95-57-8	8270E	ND		0.80	0.15	ug/L	1
4-Chlorophenyl phenyl ether	7005-72-3	827GE	ND		0.80	D.16	ug/L	1
Chrysene	218-01- 9	827 0 E	ND		0.16	0.040	ug/L	1
Oibenzo(a,h)anthraceno	53-70-3	8270F	ND		0.16	0.040	ug/L	1
Dibenzofuran	132 - 84-9	8270E	ND		0.80	0.16	ug/L	1
3.3'-Dichlorobenzidine	91-94-1	8270E	ND		4.0	0.81	ug/L	1
2.4-Dichlorophenol	120-83-2	8270E	ND		0.80	0.19	ug/L	1
Diethylphinalate	84-66-2	8270E	ND		4.0	0.19	цдЛ.,	1
Dimethyl phthalate	131-11-3	8270E	ND		4.C	0.18	ug/L	1
2,4-Dimethylphenol	105-67-9	8270E	ND		0.80	0.15	ug/L	1
Di-n-butyl phthalate	84-74-2	8270E	ND		4.0	0.42	ug/L	1
4,8-Dinltro-2-methylphenol	534-52-1	8270E	ND		4.0	0.89	ug/L	1
2,4-Dinitrophenol	51-28-5	8270E	NÞ		4.0	1,3	ug/L	1
2,4-Dinitrotatuene	121-14-2	8270E	No		1.6	0.36	ug/L	1
2,6-Dinitrotoluene	806-20-2	8270E	ND		1.6	0.34	ug/L	1
Di-n-octylphthalate	117-84-0	8270E	ND		4.0	0.48	ug/L	1
bis(2-Ethylhoxyl)phthalate	117-81-7	8270E	0.63	BJL	4.0	0.38	ug/L	1
Fluoranthene	206-44-0	8270E	ND		0.16	0.040	ug/L	1
Fluorene	86-73-7	8270E	ND		0.16	0.040	ug/L	1
Hexachlorobenzene	118-74-1	8270E	ND		0.80	0.15	ug/L	1
Hexachlorobutadiene	87-68-3	8270E	ND		0.80	0.17	ug/L	1
Hexachlorocyclopentadiene	77-47-4	8270E	ND		4.0	1.1	ug/L	1
Hexachloroethane	67-72-1	8270E	ND		0.80	0.17	ug/L	1
Indeno(1,2,3-c,d)pyrono	193-39-5	8270F	ND		0.16	0.040	ug/L	1
Isophorono	78 -59-1	8270E	ND	L	0.80	0.22	ug/L	1
2-Methylnaphthalene	91-57-6	8270E	0.043	J	0.18	0.040	ug/L	1
2-Methylphenol	95-48-7	8270F	ND		0.80	0.21	ug/L	1
3+4-Methylphenol	106 -44- 5	8270E	ND		1.6	0.46	ug/L	1
Naphthalene	91-20-3	8270E	0.051	J	0.16	0.040	ug/L	1
2-Nitroanilina	88-74-4	8270E	CM		1.6	0.66	ug/L	1
3-Nitroaniline	99-09-2	8270E	ND		1.6	0.15	⊾g/L	1
4-Nitroaniline	100-01-6	8270E	ND		1.6	1.3	ưg/l.,	1
Nitrobenzene	98-95-3	8 2 700	ND		0.80	0.17	ψg/l.	1
2-Nitrophenol	88-75-5	8270E	ND		1.6	0.44	ug/L	1
4-N'trophenol	100-02-7	82 70∃	NO		4.0	2.1	vg/L	1
N-Nitrosodi-n-propylamine	821-64-7	82 70∃	ND	1	0.80	0.28	ug/L	1

I/QQ = I Imit of Quantitation ND = No: calected at or above the Cu-H = Cut of holding time

 $B \leftarrow \text{Detected in the instruct blank}$ N = Recovery is out of or tarial Will Raported on wet weight basis. R = Quantitation of compound exceeded the calibration range | DL = Datection Limit $P \simeq The RPD$ between two GC columns exceeds 40%

J = Eathhated result < LOQ and g $D_{\rm C}$

Q = Surrogeta fallure L = LCS/LCSD /ailurg S = M8/M8D feture

Page Analytical Services, LLC. (formany Sheety Environmental Services, Inc.)

106 Vantage Polint D4vo - Wost Columbia, SC 29172 (803) 791-9700 - Pax (803) 791-9111 - www.pacelabs.com

Description: GW-4

Date Sampled:05/07/2021 1220 Date Received: 05/10/2021

Laboratory ID: WE10034-009

Metrix: Aqueous

Semivolatile Organic Compounds by GC/MS	
 	$\overline{}$

Run	Prop Method	Analytical Method		Analysis Date Analyst	
1	3520C	8270E	1	05/16/2021 1746 STM	05/13/2021 1422 92194

Parameter .	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
N-Nitrosodiphenylamine (Diphenylamine)	86-30-6	8270E	ND	0.80	0.50	ug/L	1
Pentachlorophanol	87 -8 6-5	8270E	ND	4.0	1.3	ug/L	1
Phenanthrene	85-01-8	8270E	ND	0.16	0.040	ug/L	1
Phenol	108-95-2	827CE	ND	0.80	0.19	ug/L	1
Pyrene	129-00-0	8278E	ND	0.16	0.040	ug/L	1
2,4,5-Trich oropherel	95-96-4	8270E	ND	0.80	0.19	υg/L	1
2,4,6-Trichiorophenol	88-06-2	8270E	ND	0.80	0.22	ug/L	1

Surrogate	Run 1 A Q % Recovery	Acceptanco Limits			
2-Fluorobiphenyl	71	37-129			
2-Fluorophenol	42	24-127			
Nitrobenzene-d5	73	38-127			
Phenol-d5	56	28-128			
Terphenyl-d14	76	10-148			
2.4,6-Tribromophenoi	52	35-144			

CVAA

1 7470A 1 05/13/2021 1843 OMS2 05/13/2021 1224 92149	Run Prep Method Analytical Meth	od Dilu	ution	Analysis Date Analyst	Prep Date	Batch
	1 7470	IΑ	1	05/13/2021 1843 CMS2	05/13/2021 1224	92149

Parameter	CAS Number	Analytical Mothod	Result Q	LOQ	DL	Units	Run
Dissolved Mercury	7439-97-6	7470A	ND	0.00020	0.0000091	mg/L	1

ICP-MS

Run	Prep Mothod	Analytical Method	Dilution	Analysis Date Analyst	Prep Date	Batch
1	3006A	8020B		05/13/2021 1938 BPK		92120
2	3005A	60208	10	06/13/2021 2100 BPK	05/13/2021 0401	92120

Parameter	CAS Number	Analytical Method	Result	Q LOQ	DL	Units	Run
Dissolved Aluminum	7429-90-5	6020B	13	J 40	10	ug/L	1
Dissolved Antimony	7440-36-0	6020B	2.1	2.0	0.50	ug/L	1
Dissalved Arsenic	. 7440-38-2	6020B	NO	2.5	1.3	ug/L	1
Dissolved Barium	7440-39-3	6020B	210	5.0	1.3	ug/L	1
Dissolved Cadmium	7440-43-9	6020B	ND	0.50	0.13	ug/L	1
Dissolved Calcium	7440-70-2	8020日	120000	4000	1000	ug/L	2
Dissolved Chromium	7440-47-3	6020B	ND	5. D	1.3	ag/L	1
Dissolved Cobalt	7440-48 -4	6020B	ND	5.0	1.3	ug/L	1
Dissolved Copper	7440-50-0	602 0 B	ND	5.0	1.3	ug/L	1

LOC - Limit of Quantitation		R = QuantityBon of compound exceeded the calibration (angle	SL – Defection Cirit	© = Surrogate felluro
ND = Not detected at or above the DL	N = Hecsvery Is out of criticals.	P = The RCD between two GC columns exceeds 40%	# = Estimated result < LOC and ≥ DL	L = LCS/LCSD fallure
the Out of holding lime	Win Reported on wat weight basis			S = MS/MSD fellure

Description: GW-4

Date Sampled:05/07/2021 1220 Data Received: 05/10/2021

Laboratory ID: WE10034-009

Matrix: Aqueous

ICP-MS

Rui	n Prep Method	Analytical Method	Dilution	Analysis Date	Analyst	Prep Date	Batch
1	3005∧	60208	1	05/13/2021 1938	B BPK	05/13/2021 0401	92120
2	3005A	6020B	10	05/13/2021 2100) BPK	05/13/2021 0401	92 120

CAS Number	Analytical Method	Rosult	Q	LOQ	DL	Units	Run
7439-39-6	6020B	29	J	50	13	ug/L	1
7439 - 92-1	6020B	ND		1.0			1
7439-95-4	6020B	9100		400		_	1
7439-86-5	6020B	940		50		_	2
7440-02-0	6020B	1.3	J	5.0		•	1
7440-09-7	8020B	7500		400	100	•	1
7782-49-2	6020B	ND		5.0	1.3	•	1
7440-22-4	6020B	ND		1.0	0.25	_	•
7440-23-5	6020B	8900		400	150	_	1
7440-28-0	6020B	ND		0.50	0.15	_	1
7440-62-2	6020B	ND		5.0		-	1
7440-88-6	60209	ND		10	2.5	ug/L	1
-	Number 7439-39-6 7439-92-1 7439-95-4 7439-96-5 7440-02-0 7440-09-7 7782-49-2 7440-22-4 7440-28-0 7440-62-2	Number Method 7439-89-6 6020B 7439-92-1 6020B 7439-95-4 6020B 7439-95-5 6020B 7440-02-0 6020B 7440-09-7 8020B 7782-49-2 6020B 7440-22-4 6020B 7440-23-5 6020B 7440-28-0 6020B 7440-62-2 6020B	Number Method Result 7439-89-6 6020B 29 7439-92-1 6020B ND 7439-95-4 6020B 9100 7439-95-5 6020B 940 7440-02-0 6020B 1.3 7440-09-7 8020B 7500 7782-49-2 6020B ND 7440-22-4 6020B ND 7440-23-5 6020B 8900 7440-28-0 6020B ND 7440-62-2 6020B ND	Number Method Result Q 7439-89-6 6020B 29 J 7439-92-1 6020B ND 7439-95-4 6020B 9100 7439-96-5 6020B 940 7440-02-0 6020B 1.3 J 7440-09-7 8020B 7500 7782-49-2 6020B ND 7440-22-4 6020B ND 7440-23-5 6020B 8900 7440-28-0 6020B ND 7440-62-2 6020B ND	Number Method Result Q LOQ 7439-39-6 6020B 29 J 50 7439-92-1 6020B ND 1.0 7439-95-4 6020B 910D 400 7439-98-5 6020B 940 50 7440-02-0 8020B 1.3 J 5.0 7440-09-7 8020B 7500 400 7782-49-2 8020B ND 5.0 7440-22-4 6020B ND 1.0 7440-23-5 6020B 8900 400 7440-28-0 6020B ND 0.50 7440-62-2 6020B ND 5.0	Number Method Result Q LOQ DL 7439-89-6 6020B 29 J 50 13 7439-92-1 6020B ND 1.0 6.25 7439-95-4 6020B 9100 400 50 7439-98-5 6020B 940 50 13 7440-02-0 6020B 1.3 J 5.0 1.3 7440-09-7 8020B 7500 400 100 7782-49-2 6020B ND 5.0 1.3 7440-22-4 6020B ND 1.0 0.25 7440-23-5 6020B 8900 400 150 7440-28-0 6020B ND 0.50 0.15 7440-62-2 6020B ND 5.0 2,5	Number Method Result Q LOQ DL Units 7439-39-6 6020B 29 J 50 13 ug/L 7439-92-1 6020B ND 1.0 0.25 ug/L 7439-95-4 6020B 9100 400 50 ug/L 7439-96-5 6020B 940 50 13 ug/L 7440-02-0 8020B 1.3 J 5.0 1.3 ug/L 7440-09-7 8020B 7500 400 100 ug/L 7782-49-2 6020B ND 5.0 1.3 ug/L ug/L 7440-22-4 6020B ND 1.0 0.25 ug/L 7440-23-5 6020B 8900 400 150 ug/L 7440-62-2 6020B ND 0.50 0.15 ug/L 7440-62-2 6020B ND 5.0 2.5 ug/L

LCQ - Lmit of Quantilation NC = Not delocted at or above the DL

Hie Cut of halding Ilma.

A = Detected in the method blankN - Recovery is aut of criteris

Wie Reported on wat weight basis

 ${\sf E} = {\sf Quantifallon}$ of compound exceeded the callbrellon range F = I're RPD between two SC columns expaeds 40%.

DL = Dalection Limit $J=Estimated result < 2000 and <math>\geq Dt$.

Q = Surrogate felture L = LOS/LOSD fallure: S = MS/MSD failure

Date Sampled:05/07/2021 1050 Date Received: 05/10/2021

Laboratory ID: WE10034-010 Matrix: Aqueous

Volatile Organic Compounds by GC/MS

	Prep Method	Analytical Method	Dilution	Analysis Dato Analyst	Prep Date	Batch
1	5030B	8280D	1	05/16/2021 2123 JDF		92459

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Acetone	67- 6 4-1	8260D	ND	20	6.0	ug/L	1
Henzene -	71-43-2	9280D	ND	1.0	0.40	ng/L	1
Bromodichloromethane	75-27-4	8260D	ND	1.0	0.40	ug/L	1
Bromoform	75-25-2	8260D	ND	1.6	0.40	ug/L	1
Bromoniethane (Methyl promide)	74-80-9	8260D	ND	2.0	0.40	ug/L	1
2-Butanone (MEK)	78-93-3	8260D	ND	10	2.0	ug/L	1
Carbon disulfido	75-16-0	8260D	. ND	1.0	0.40	ug/L	1
Carbon tetrachloride	56-23-B	8260D	ND	1.0	0.40	ug/L	1
Chlorobenzans	108-90-7	82600	ND	1.0	0.40	ug/L	1
Chloroetharie	75-00-3	82600	СИ	2.0	0.40	ug/L	1
Chlaraform	67-66-3	82600	ND	1.0	0.40	ug/L	1
Chloromethane (Mothyl chloride)	74-87-3	8 2 500	ND	1.0	C.50	ug/L	1
Cyclohexane	110-82-7	8 260 D	ND	1.0	0.40	па/Г	1
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	82€0 D	ND	1,0	0.40	ug/L	1
Dibramachlaromethane	124-48-1	#280D	ND	1.0	0.40	ug/L	1
1,2-Dibromoethane (EDB)	106-93-4	8260D	ND	1.0	0.40	ug/L	1
1,2-Dighlarabanzene	95-50-1	8260D	ND	1.0	0 40	ug/L	1
1,3-Dichlarabenzene	541-73-1	8260D	ND	1.0	0.40	ug/L	1
1,4-Dichlarobanzone	108-46-7	8260D	ND	1.0	0.40	ug/L	1
Dichlorodifluoromothane	75-71-8	8260D	ND	. 2.0	0.60	ug/ <u>L</u>	1
1,1-Dichlercethane	75-34-3	82609	ND	1.0	0.40	ug/L	•
1,2-Dichlereathane	107-00-2	8260D	ND	1.0	3.40	ug/L	1
1,1-Dichloroethene	75-35-4	8260D	N2	1.0	0.49	ug/L	1
dis-1,2-Dichloroethene	156-59-2	8200D	ND.	1 .0	0.40	ug/L	1
trans-1,2-Dichiproethene	156-60-5	828CD	ND	1.0	0.40	ug/L	1
1,2-Dichloropropane	78-87-5	8280D	ND	1.0	0.40	υg/L	1
cis-1,3-Dichloropropene	10061-01-5	8280D	ND	1.0	0.40	ug/L	1
trens-1,3-Dichloropropene	10061-02-6	8280D	ND	1.0	0.40	ug/L	1
Ethylbenzene	100-41-4	8280D	ND	1.0	0.40	ug/L	1
2-Hexandria	591-78-6	8280D	ND	10	2.0	ug/L	1
Isopropylbenzene	98 -8 2-8	8260D	ND	1.0	0.40	ug/L	1
Methy' acetate	79-20-9	8260D	ND	1.0	0.40	ug/L	1
Methy Tortlary butyl ether (MTBE)	1834-04-4	8260D	ND	1.0	0.40	ug/L	1
4-Methyl-2-pentarione	108-10-1	\$260D	ND	10	2.0	ug/L	1
Methylcyclohoxane	108-87-2	8260D	ND	6.0	0.40	ug/L	1
Methylene chlorido	75-09-2	82600	ND	1.0	0.40	ขอ/L	1
Styrene	100-42-5	82600	- ND	1.0	0.41	ug/L	1
ti,1,2,2-Tetrachloroofnanc	79-34-5	8 2 600	ND	1.0	0.40	ug/L	1
Teirachlo:gethene	127-18-4	8260D	NO	1.0	C.40	ug/L	1
Toluene	108-88-3	8260D	NO	1.0	0.40	u g/L	1

LOO ~ Limit of Quantifalion
All and a start consent and returned about Mineral

B = Datested in the melliod blank

E = Quartitation of compound exceeded the calibration range | DL = Detection it mil

Q = Samgate fallure L = LC8/LC8D follows

ND = Not accepted at or above the DL. 11 - Out of holding from

N = Recovery signification Wie Reported on wat weight basis P = The RPD between two GC columns exceeds 40% $\,$

 $J = \text{Bstimated result} \in I(QQ) \text{and} \geq DL$

 $S = \mathsf{MS/MSD}(\mathsf{latture})$

Description: GW-5

Date Sampled:05/07/2021 1050 Date Received: 05/10/2021 Laboratory ID:WE10034-010

Matrix: Aqueous

Volatile Organic Compounds by GC/MS

Run	Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date	Batch
1	2030B	8260D		05/16/2021 2123 JDF	•	92459

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
1,3,2-Trichloro-1,2,2-Trifluoroothane	76-13-1	8260D	ND.	1.0	0.42	ug/l,	1
1,2,4-Trich!orobenzona	120-82-1	8260D	ND	1.0	0.40	ug/L	1
1.1,1-Trichloroethans	71-55-6	8260D	ND	1.0	0.40	ug/L	1
f 1,2-Trichleroethane	78-00-5	8280D	ND	1.0	0.40	ug/L	1
Trichlargethene	79-01-6	82800	CN	1.0	0.40	ug/L	1
Trichiorofluoromethane	75-69-4	8280D	ND	1.0	0.40	ug/L	1
Vlnyt chlaride	75 - 01-4	8260D	ND	1.0	0.40	ug/L	1
Xylenes (total)	1330-20-7	8260D	ND	1.0	0.40	μg/l.	1

 Surrogato
 Run 1 kecovery
 Acceptance Limits

 Bromofluoroborzene
 87
 70-130

 1,2-Dichloros/hane-d4
 87
 70-130

 Toluene-d8
 92
 70-130

Semivolatile Organic Compounds by GC/MS

Run	Prep Method	Analytical Method	Dilution	Analysis Date Analy	st Prep Date	Batch
1	3520C	8270E	1	05/16/2021 1811 STM	05/13/2021 14	22 92104

Paramoter	CAS Number	Analytical Mothod	Result Q	LOQ	DL	Units	Run
Aconaphthone	83-32-9	8270E	0.045 J	0.16	0.040	ug/L	1
Acenaphthylono	208-96-8	8270E	ИD	0.16	0.040	ug/L	1
Acetophenone	98-86-2	8270E	ND	0.80	0.23	ug/l.	1
Anthracene	120-12-7	8270E	ND	0.16	0.040	ug/l.	1
Atrazine	1912-24-9	8270E	ND	0.80	0.20	ug/L	1
Benzaldehyde	100-52-7	8270E	ND	4.0	0.27	ug/L	1
Senzo(a)anthracano	56-55-3	8270E	NO.	0.16	0.040	ug/L	1
Benzo(a)pyrona	50-32-8	8270E	ND	0.16	0.040	ug/L	f
Benzo(b)fluoranijtene	205-99-2	8270E	ND	0.16	0.040	ug/L	1
Benzo(g,h,i)perylene	191-24-2	8270E	ND	0.16	0.040	ug/L	1
Bonzo(k)fluoranthene	207-08-9	8270E	NB	0.16	0.040	ug/L	1
1,1'-Blphenyl	92-52-4	8270E	ND	0.80	0.21	ug/L	1
4-Bramaphenyl phanyl ether	101-55-3	8270≘	ND	0.80	0.15	ug/L	1
Bulyi benzyi phihalate	85-68-7	8270⊟	ND	4.0	0.21	ug/L	1
Caprolectam	105 -6 0-2	8270F	ND	4.0	0.71	ug/L	1
Carpazole	86-74-8	8270E	ND L	0.80	0.040	ug/L	1
bis (2-Chloro-1-methylethyl) ethør	108-60-1	8270E	ND	0.80	0.17	ug/L	1
4-Chloro-3-methyl phenol	59-50-7	8270E	ND	0.80	0.26	ug/L	i
4-Chloroaniline	106-47-8	8270⊟	ND	0.80	0.13	ug/L	1
bis(2-Chloroethoxy)methane	111-91-1	8270E	ND	0.80	0.060	ug/L	1

LOQ = Himb of Quantitation B = Detacted in the mothod blank P = Quantitation of compound exceeded the calibration range | DL = Decadion Limit | Quantitation of participation | DL = Decadion Limit | Quantitation of participation | DL = Decadion Limit | Quantitation | DL

Pace Analytical Services, LLC (formerly Sheary Environmental Services, Inc.)

106 Vantage Point Drive Wost Columbia, SC 29172 (803) 791-9700 Fax (803) 791-9111 www.pace abs.com

Description: GW-5

Date Sampled:05/07/2021 1050 Date Roceived:05/10/2021 Eaboratory ID: WE10034-010 Matrix: Aqueous

Semivolatile Organic Compounds by GC/MS

Run	Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prep Date Batch
1	35200	8270∈			05/13/2021 14 2 2 92194

Parameter	CAS Number	Analytical Method	Result	a	LOQ	DL	Units	Run
bls(2-Chloroethyl)ether	111-44-4	8270E	ND		0,80	0.18	цg/L	1
2-Chloronaphthalene	91-58-7	8270E	ND		08,0	0.16	цg/L	1
2-Chlorophenol	95-67-8	8270E	ND		08.0	0.15	цg/L	1
4-Chlorophenyl phenyl ether	7005-72-3	8270≝	ND		08.0	0.16	ug/L	1
Chrysena	218-01-9	8270E	CN		0.16	0.040	ug/L	1
Olbenzo(a,h)anthracene	53-70-3	8270E	CN		0.18	0.040	ug/L	1
Olbenzofuran	132-64-9	8270F	ND		0.80	0.16	ug/L	1
3,3'-Dichlorobanzidine	91-94-1	8270E	ND		4.0	0.81	υg/L	1
2,4-Dichlorophenol	120-83-2	8270F	ND		0.80	0.19	ug/L	1
Diethylphthalate	84-66-2	8270E	0.43	J	4.0	0.19	ug∤∟	1
Dimethy! ohtha!ate	131-11-0	8270E	ND		4.0	0.18	υg/L	1
2,4-Dimethylphoло!	105-87-9	8270E	ND		0.80	0.15	ug/I	1
Di-n-butyl phthalate	84-74-2	8270E	1.0	J	4.0	0.42	սց/Լ	1
4,6-Dinitro-2-methylphenol	534-52-1	8270E	ND.		4.0	0.89	ug/k.	1
2,4-Dinltrophenol	51-28-5	8270E	ND		4,0	1.3	ug/L	1
2,4-D'nitrotoluene	121-14-2	8270F.	ND		1.6	0.38	ug/L	1
2,6-Dinifrotoluene	608-20-2	8270F.	ND		1.8	0.34	ug/L	1
Di-n-actylphthalate	117-84-0	8270F	ND		4.0	0.48	ug/l.	1
bis(2-Ethylhoxyl)phthalate	117-81-7	8270E	0.04	BJL	4.0	0.38	ug/L	1
Fluoranthene	208-44-0	8270F.	ND		0.16	0.040	ug/L	1
Fluoreno	86-73-7	8270€	ND		0.16	0.940	ug/L	1
Hexachlorobonzene	118-74-1	8270F	PO		0.83	0.15	λ(g/L	1
Hexachlorobutadiena	87-68-3	8270E	CN		0.80	0.17	ug/L	1
Hexachlorocyclopentaclene	77-47-4	8270E	В		4.0	1.1	ug/L	1
Hexachloroethane	67-72-1	8270E	ND		0.80	0.17	ug/L	1
Indeno(1,2,3-c,d)pyrene	193-39-5	8270E	ND		0.18	0.040	ug/L	1
Isophorone	78-5 9 -1	8270E	ND	L	0.80	0.22	ug/L	1
2-Mothylnaphthalene	91-57-6	827CE	ND		0.16	0.040	μg/L	1
2-Methylphonol	95-48-7	8270E	ND		0.80	0.21	ug/L	1
3+4-Methylphenol	106-44-5	8270E	ND		1.6	0.46	սց/Ն	1
Naphthalene	91-20-3	8270E	ND		0.16	0.040	ug/L	1
2-Nitroanitine	86-74-4	8270E	ND		1,6	0.88	ug/L	1
3-Nitroanitine	99-09 - 2	8270E	ND		1.6	0.16	ug/L	1
4-Nitroaniline	100-01-6	8270 ≓	ND		1.6	1.3	ug/L	1
Nitrobanzone	98-95-3	8270F.	ND		0.80	0.17	ug/L	1
2-Nitrophanol	88-75-5	8270F.	ND		1.6	0.44	ug/l.	1
4-Nitrophenol	100-02-7	8270E	ND		4.0	2.1	ug/l.	1
N-Nitrosadi-n-propylamine	621-64-7	8270E	ND	L	0.80	0.28	ug/L	1
N-Nitrosediphenylamina (Diphenylamine)	86-30-6	8270E	ND		0.80	0.50	ug/L	1
Pentachlorophanol	87-86-5	8270E	ND		4.0	1.3	ug/L	1

		·		
LCQ = Light of Quantitation	B = Detected in the microsolidank	E = Quantitation of compound exceeded the cathration rungs	DL - Delaction Littlt	Q = Surrogate fallum
ND = Not delected at prispaye the Du	N = Recovery le out of criteria	P = Title RPD between two GC polurens exceeds 40%	J = Estimated result < LOQ and > UL	L = LCS/LCSD fatura
H = Out of holding time	W = Reported on wet weight basis			B = M8/M8D failure

Description: GW-5

Date Sampled:05/07/2021 1050 Date Received: 05/10/2021

Laboratory ID: WE10034-010

Matrix. Aqueous

Semivolatile	Organic	Compounds by GC/MS	
			_

Run	Prep Method	Analytical Method	Dilution	Analysis Date Analys	Prep Date Batch
1	3520C	8270E	?	05/16/2021 1811 STM	05/13/2021 1422 92194

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Phonanthrene	85-01-8	8270E	NO.	0.16	0.040	ug/L	1
Phenol	108-95-2	8270E	ND	08.0	0.19	ug/L	1
Pyrerie	129-00-0	8270H	ND	0.16	0.040	ug/L	1
2.4,5-Trich/grophenal	95-95-4	8270E	ND	0.80	0.19	υg/L	1
2,4,6-Trichlarophenal	88-08-2	8270E	ND	0.80	0,22	υg/L	1

Surrogate	Run 1 Acceptance Q % Recovery Limits
2-Fluomalpheny!	71 37-129
2-Fiusrophenol	41 24-127
Nitrobenzene-d5	73 38-127
Phenol-d5	53 28-128
Terphenyl-d14	76 10-148
2,4,6-Tribromophenol	56 35-144

CVAA

Run Prep Method	Analytical Method	Dilution	Analysis Date Analyst	Prop Date	Batch
1	7470A	1	05/13/2021 1846 CMS2	05/13/2021 1224	92149

Parameter	CAS Numbor	Analytical Method	Result Q	LOG	DL.	Units	Run
Dissolved Mercury	7439-97-â	7470A	ND	0.00020	0.000091	mg/L	1

ICP-MS

Run	Prep Mothod	Analytical Method	Dilution	Analysis Date Analys	t Prop Date	Batch
1	3005A	6020B	1	05/13/2021 2000 DPK	06/13/2021 0401	92120
2	3005A	6020B	10	05/13/2021 2107 BPK	05/13/2021 0401	92120

	CAS	Analytical					
Parameter	Number	Method	Result Q	LOQ	PL.	Units	Run
Dissolved Aluminum	7429-90-5	6020B	81	40	10	ug/L	1
Dissolved Antimony	7440-36-0	6020B	0.56 J	2.0	0.50	ug/L	1
Dissoived Arsento	7440-38-2	6020B	ND	2.0	1.3	ug/L	1
Dissolved Barium	7440-39-3	6020B	26	5.0	1.3	ug/L	1
Dissolved Cadmium	7446-43-9	6020B	ND	0.50	0.13	ug/L	1
Dissolved Calcium	7440-70-2	6020B	80000	4000	1000	ug/L	2
Dissolved Chromium	7440-47-3	6020B	ND	5.0	1,3	υg/L	1
Dissolved Cobalt	7440-48-4	6020B	ND	5.0	1.3	սց/Լ	1
Dissolved Copper	7440-\$0-8	6020B	ND	5.0	1.3	ug/L	1
Dissolved Iron	7439-89-6	6020B	2300	50	13	ug/L	1
Dissolved Lead	7439-92-1	6020B	ND	1.0	0.25	110/1	1

LCQ = Limit of Quantilation	3 = Jelesied in the method blank	Ein Quanillation of compound exceeded the calibration langu	DL = Detection Limit	Q = 8urragete fallure
NO = Not detected at or above the DL	A = Recovery is out of criteria	P = The RPD between two GC columns accesses 40%	JiP Estimated result < LOQ and > DL	L = CCS/LCSD falure
H = Out of halotte lime	Wie Reported on well weight basis			S = MS/MSD fellure

Description: GW-5

Dato Sampled:05/07/2021 1050 Date Received: 05/10/2021

Laboratory ID:WE10034-010 Matrix: Aqueous

ICP-MS

Run	Prep Method	Analytical Method		Analysis Date Analyst		Batch
1	3006/\	6020B	1	05/10/2021 2000 BPK	05/13/2021 0401	92120
2	3005A	6020B	10	05/13/2021 2107 BPK	05/13/2021 0401	92120

Parameter	CAS Number	Analytical Method	Result Q	LOQ	DL	Units	Run
Dissolved Magnesium	7439-95-4	6020B	15000	400	50	ug/L	¨ 1
Dissolved Manganese	7439-96-5	6020B	430	50	13	ug/L	2
Dissolved Nickel	7440-02-0	6020B	1.6 J	5.0	1.3	սց/ե	1
Dissolved Potassium	7440-09-7	6020B	8900	400	100	ug/L	1
Dissolved Selenium	7782-49-2	6020B	ND	5.0	1.3	ug/L	1
Dissolved Silver	7440-22-4	6020B	ND	1.0	0.25	ug/L	1
Dissolved Sadium	7440-23-5	6020B	7400	400	150	ug/L	1
Dissolved Thallium	7440-28-0	6020B	ND	0.50	0.15	ug/L	1
Dissolved Vanedium	7440-62-2	60203	ND	5.0	2.5	ug/L	1
Dissolved Zing	7440-66-6	6020B	ND	10	2.5	ug/L	í

LOQ = Unit; of Quantitation NU = Mol distantal at an above the DL -

41 - Out of holding time

Bin Detected in the method blank N = Recovery is out of ofterla Wie Reported on well woight basis B = Quantitation of compound exercised the califernian range | UII = Dejection Limit P = 1,5∉ RPD between two GC cultumna excepts 40%.

c = Estimated rase $0 \le LOQ$ and $\ge DL$

Q = Sumogalie fallure $L \simeq LC\delta/LCSD$ failure Sis MS/MSC tailure

QC Summary

Volatile Organic Compounds by GC/MS - MB

Sample ID: WQ92459-001 Batch: 92459 Analytical Method: 82600

Matrix: Aqueous Prep Method: 6030B

Parameter	Result	Q	Dil	LOG	, DL	Units	, Analysis Date
Acelone	ND		:	20	5.0	ug/L	05/16/2021 1819
Benzene	ND		1	1.0	0.40	ug/L	05/16/2021 1619
Bromodichloromethane	ND		1	1.0	0.40	ug/L	05/10/2021 1619
Bromafarm	ND		1	1.0	0.40	ug/L	05/16/2021 1019
Bromomethane (Methyl bromide)	ND		1	2.0	0.40	ug/L	05/18/2021 1619
2-Butanone (MEK)	ND		1	10	2.0	ug/L	05/18/2021 1619
Carbon disulfide	ND		1	1.0	0.40	ug/L	05/18/2021 1619
Carbon tetrachloride	ND		1	1.0	3.40	ug/L	05/16/2021 1619
Chlorobenzone	ND		1	1.0	0.40	ug/L	05/16/2021 1619
Chi proethane	ND		1	2.0	0.40	ug/t.	05/16/2021 1619
Chioraform	ND		1	1.0	0.40	ug/L	05/16/2021 1619
Chloromethano (Methyl chloride)	ND		1	1.0	0.60	ug/L	05/16/2021 1619
Cyclohexane	ND		1	1.0	0.40	ug/L	05/16/2021 1619
1,2-Dibromo-3-chloropropane (DBCP)	NЭ		1	1.0	0.40	ug/L	06/16/2021 1619
Dibramochleromethane	ND		1	1.0	0.40	ug/L	05/16/2021 1619
1,2-Dibromoethane (RDB)	ND		1	1.0	0.40	σg/L	05/16/2021 1619
1,2-Dichlorobenzene	1.3		1	1.0	0.40	ug/L	05/16/2021 1819
1.3-Dichlorobonzene	ND			1.0	0.40	ug/L	05/16/2021 1818
1,4-Dichlorobonzene	ND		1	1.0	0.40	ug/L	05/16/2021 1619
Dichlorodifluoromethane	ND		1	2.0	0.60	ug/L	05/16/2021 1619
1.1-Dichloroothane	ND		1	1.0	0.40	ug/L	05/16/2021 1619
1.2-Dichloroothane	ND		1	1.0	0.40	ug/L	05/18/2021 1619
1,1-Dichloroethone	ND		1	1.0	0.40	ug/L	05/16/2021 1619
cls-1.2-Dichlorcethere	ND		1	1.0	0.40	ug/L	05/16/2021 1619
trans-1.2-Dichloroethene	ND		1	1.0	0.40	ug/L	05/16/2021 1619
1,2-Dichloroprepan⊕	ND		1	1.0	0.40	ug/L	05/16/2021 1619
cls-1,3-Dichloropropene	ND		1	1.0	0.40	ug/L	05/16/2021 1619
trans-1,3-Dichloropropene	ND		1	1.0	0.40	ug/L	05/16/2021 1619
Ethylbenzene	ND		1	1.0	G.40	ug/L	05/16/2021 1619
2-Hexanone	ND		1	10	2.0	ug/L	05/16/2021 1619
sopropylbenzene ,	ND		1	1.0	0.40	ug/L	06/16/2021 1619
Methyl acetato	ND		1	1.0	0.40	ug/L	05/16/2021 1619
Methyl terdary butyl ether (MTBE)	ND		1	1.0	0.40	ug/L	05/16/2021 1619
4-Methyl-2-pentanone	ND		1	10	2.0	ug/L	05/16/2021 1619
Methyloydohexane	ND		1	5.0	0.40	ug/L	05/16/2021 1619
Metnylene chtorido	ND		1	1.0	0.40	ug/L	05/16/2021 1619
Styrene	ND		1	1.0	0.41	ug/L	05/18/2021 1619
1,1,2,2-Tetrach!orgethang	ND		1	1.0	0.40	ug/L	05/16/2021 1819
Tetrachloroethene	ND			1.0	0,40	ug/L	05/18/2021 1619
Taluene	ND			1.0	0.40	ug/L	05/18/2021 1619
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND		•	1.0	0.42	ug/L	05/18/2021 1619
1,2,4-Trichlorabenzana	ND		1	1.0	0.40	ug/L	05/18/2021 1619
1.1.1-Trichlorgethane	ND		i	1.0	0.40	ug/L	05/18/2021 1619
1,1,2-Trichloroethane	ND		1	1.0	0.40	ug/L	05/16/2021 1619
1,1,2*Thenloroeulane	ND		'	1	2110	~a.=	·•-··

LOC - Limit of Quentitation

 $ND = N \omega_{\rm t}$ itelesced at or above the DL.

N – Recovery is trut of orbida

DU ~ Detection Limit $J = \text{Fajimaled rusuit} \times LOQ \text{ and } \geq UL$ Pil- The RPU betwach Iwo GC columns exceeds 40%

1 = RSD ia cut of oftera

+ = RPD is actiof atterfs

Pade Arie yficel Scrylces, LLC - (formarly Shealy Environmental Services, Inc.)

⁴⁰⁶ Ventage Point Drive - West Columbia, SC 20172 (503) 791-9700 - Fex (503) 791-9111 - www.pacelabs.com

Volatile Organic Compounds by GC/MS - MB

Sample ID: WQ92459-001 Batch: 92459 Analytical Method: 8260D Matrix: Aqueous Prep Method: 5030B

Parametor	Result	ଘ ।।।	LOQ	. DL	Units	Analysis Date
Frichlozoethena	ND	1	1.0	0.40	ug/L	05/16/2021 1619
Trichlorofluoromethane	ND	1	1.0	0.40	ug/L	05/16/2021 1619
Vinyl chloride	ND	1	0,1	0.40	ug/L	05/16/2021 1819
Xylones (totel)	ND	1	1.0	0.40	Jg/L	05/16/2021 1619
Surrogate	Q % Rec	Acceptance Limit				
Bramofluorobenzene	94	70-130				
1,2-Dichlordethano-d4	90	70-130				
Toluene-d8	96	70-130				

LOQ = Limit of Quantitation

ND = Not detected at or above the Du

 $J=Betimetee result < LOC and <math>\geq DL$

N ≃ Recovery is out of criteria

DL = Datection Lim't

P = The RPD between two GC columns exceeds 40%

4 ≂ RSD is out of or tar a

+ = RPD is out of criteria

Volatile Organic Compounds by GC/MS - LCS

Sample ID: WQ92459-002 **Batch:** 92459 Matrix: Aqueous Prep Mothod: 5030B

Analytical Method: 8260D

	Spike Amount	Result		0/ B	%Rec	Amelyala Data
Parameter	(ug/L)	(ug/L)	Q DII	% Rec	Limit	Analysis Date
Acetone	100	120	1	119	60-140	05/16/2021 1528
Benzono	60	51	1	102	70-130	05/16/2021 1528
Bromodichloromethane	50	47	1	94	70-130	05/16/2021 1528
Bromoform	50	52	1	105	70-130	05/16/ 2021 1 5 28
Bromomerhane (Mothyl bromide)	50	46	1	97.	70-130	05/16/2021 1528
2-Butanona (MEK)	100	110	1	110	70-13 0	05/16/2021 1528
Carbon disulfide	50	54	1	108	70-130	05/16/2021 1528
Carbon tetrachloride	50	49	1	98	70-130	06/16/2021 1528
Chlorobonzene	50	53	1	106	70-130	06/16/2021 1528
Chloroothane	50	46	1	93	70-130	06/18/2021 1528
Chlorafarm	50	46	1	92	70-130	06/16/2021 1528
Chloromothane (Methyl chlorice)	50	47	1	94	60-140	05/16/2021 1528
Cyclohoxane	50	8 1	1	123	70-130	05/46/2021 1528
1,2-Dibromo-3-chloropropane (DBCP)	50	51	1	101	70-130	05/16/2021 1528
Dibromochloromethane	50	49	1	97	70-130	05/16/2021 1528
1,2-Dibromoethane (EDB)	50	53	1	108	70-130	05/16/2021 1528
1,2-Dichlorobenzene	50	56	1	111	70-130	05/16/2021 1528
1.3-Dichlorobenzene	60	55	1	109	70-130	05/16/2021 1528
1.4-Dichlorobenzere	60	53	1	106	70-130	05/16/2021 1528
Dichtorodifluoromethane	60	44	1	88	60-140	05/16/2021 1528
	60	48	1	95	70-130	05/16/2021 1528
1,1-Dichloroefhane		43	1	88	70-130	05/16/2021 1528
1,2-Dichloroethane	60 60		1	102	70-130	05/16/2021 1528
1,1-Dichloroethene	60 50	51 49	1	98	70-130	05/16/2021 1528
cis-1,2-Dichloroetherie	50	51	1	102	70-130	05/16/2021 1528
trans-1,2-Dichloroethene	50	49	1	98	7D-130	05/16/2021 1528
1,2-Dichloropropane	50		1	102	70-130	05/16/2021 1528
cls-1.3-Dichloropropene	50	51	•		70-130	05/16/2021 1528
trans-1,3-Dionlorogropene	50	53	1	106		05/16/2021 1528
Ethylbenzene	50	54	1	109	70-130	
2-Hexanone	100	110	1	109	70-130	05/16/2021 1528
Isapropylbenzene	50	55	1	: 10	70-130	06/16/2021 1528
Methyl acetate	50	40	1	90	70-130	05/16/2021 1528
Methyl tertlary butyl ether (MTBE)	50	49	1	98	70-1 30	05/16/2021 1528
4-Methy:-2-pontanone	100	100	1	103	7 0- 130	05/16/2021 1528
Melhylcyclohexane	50	54	1	108	70-130	05/16/2021 1528
Melnylene chlorido	50	45	1	91	70-130	05/16/2021 1528
Styrene	50	55	1	111	70-133	05/16/2021 1528
1,1,2,2-Tetrachiaroothane	50	55	1	109	70-139	05/18/2021 1528
Tetrachloroethene	50	50	1	100	70-100	05/18/2021 1528
Toluene	50	55	1	109	70-130	05/18/2021 1528
1,1,2-Trichioro-1,2,2-Trifluoroethane	50	54	1	109	70-130	05/16/2021 1528
1,2,4 Trich orabenzena	50	59	1	118	70-130	05/16/2021 1528
1,1,1-Trich oroethane	50	49	1	98	70-130	05/16/2021 1528
1,1,2-Trichlorgethane	50	63	1	106	70-100	05/16/2021 1528
HUS. Monoroanone	00		•		·	

LOO = Umit of Quantitation

ND σ Not believed at α above the DL.

 $N = \mbox{Recovery}$ is out of oriental

DL - Celection Umit

 $d \approx \text{Estimated result} \times \text{LOQ}$ and ≥ 01 .

P = Ths HPU between two GC columns acceeds 40%

*= RSD is cult of critoria

+ = RPD is gut of citeria

Volatile Organic Compounds by GC/MS - LCS

Sample ID: WQ92459-002 Batch: 92459

Analytical Mothod: 8260D

Matrix: Aqueous Prep Method: 5030B

Parameter	Spike Amount (ug/L)	Result (ug/L) (Q pil	% Rac	%Roc Limit	Analysis Date
Trichlomethene	50	47	1	93	70-130	05/16/2021 1528
Trichlorofluoromethane	50	42	1	83	70-130	05/16/2021 1528
Vlnyl chloride	5D	45	1	90	70-130	05/16/2021 1528
Xylenes (total)	100	110	1	109	70-130	05/16/2021 1528
Surrogate	Q % Rec	Acceptance Limit				
Bromofjuorobenzene	102	70-130				· ·
1,2-Dichloroethane-d4	85	70-130				
Toluene-d8	98	70-130				

LOG = Limit of Guantitalism

ND = Not dislocted at or above the DL

 $J = Estimator \ rasu8 < \bot OQ \ and \ge DL$

N = Recovery is duli of critier a

DL - Detaction Limit

P = The $\mathcal{R}^{\alpha}D$ between two GC obtains excesses 40%.

* = RSD is out of orderia

F = RPD ≥ out of criteda

Volatile Organic Compounds by GC/MS - MB

Sample ID: WQ92636-001 Batch: 92636 Analytical Method: 8260D

Matrix: Solid Prep Method: 5035

Parameter	Result	Q	DII	LOQ	DL	Units	Analysis Date
Acetone	ND		 1	20	8.0	ug/kg	05/18/2021 1003
Benzene	ND		1	5.0	2.0	ug/kg	06/18/2021 1003
Bromodichloromethene	ND		1	5.0	2.0	ug/kg	06/18/2021 1003
Bromoform	ND		1	5.0	2.0	ug/kg	05/18/2021 1003
Bromomethane (Methyl bromide)	ND		1	5.0	3.0	ug/kg	06/18/2021 1003
2-Butanone (MEK)	ND		1	20	4.0	ug/kg	05/18/2021 1003
Carbon disulfide	ND		1	5.D	2.0	ug/kg	06/18/2021 1003
Carbon tetrachloride	ND		1	5.0	2.0	ug/kg	05/18/2021 1003
Chlorobenzene	ND		1	5.0	2.0	ug/kg	05/18/2021 1003
Chloroethane	ND		1	5.0	2.0	ug/kg	05/18/2021 1003
Chlorafurm	ND		1	5.0	2.0	ug/kg	05/18/2021 1003
Chloromethane (Methyl chlorido)	CN		1	5.0	3.0	ug/kg	05/18/2021 1003
Cyclohexana	ΝЭ		1	5.0	2.0	ug/kg	05/18/2021 1003
1,2-Dibromo-3-chloropropane (DBCP)	ND		1	5.0	2.0	ug/kg	05/18/2021 1003
Dibromochlaremethane	ND		1	5.0	2.0	ug/kg	05/18/2021 1003
1,2-Dibromoethane (EDB)	ND		1	5.0	2.0	ug/kg	05/18/2021 1003
1,2-Dk:hlorobenzene	ND		1	5.0	2.0	ug/kg	05/18/2021 1003
1,3-Dichlorobenzene	ND		1	5.0	2.0	ug/kg	05/18/2021 1003
1,4-Dichlorobenzene	ND		1	5.0	2.0	ug/kg	05/18/2021 1000
Dichtoradifluaromethane	ND		1	5.0	3.0	ug/kg	05/18/2021 1003
1.1-Dichloroethane	ND		1	5.0	2.0	ug/kg	05/18/2021 1003
1,2-Dichloroethane	ND		1	5.0	2.0	ug/kg	05/18/2021 1003
1,1-Dichloroethene	ND		1	5.0	2.0	ug/kg	05/18/2021 1003
cia-1,2-Dichleroethone	ND		1	5.0	2.0	ug/kg	05/18/2021 1003
trens-1,2-Dichloroothene	ND		1	5.0	2.0	ug/kg	05/18/2021 1003
1,2-Dichloropropane	ND		1	5.0	2.0	ug/kg	05/18/2021 1003
cis-1,3-Dichlorogropene	ŊÜ		1	5.0	2.0	ug/kg	05/18/2021 1003
trans-1,3-Dichloropropеле	ND		1	6.0	2.0	ug/kg	05/18/2021 1003
Ethylbenzene	ND		1	5.0	2.0	ug/kg	05/18/2021 1003
2-Hexanone	ND		1	10	4.0	ug/kg	05/18/2021 1003
Isopropylbenzere	ND		1	5.0	2.0	ug/kg	05/18/2021 1003
Methyl acetate	ND		1	5.0	2.0	ug/kg	05/18/2021 1003
Methyl tertiary butyl ether (MTBE)	СИ		1	5.0	2.0	ug/kg	05/18/2021 1003
4-Methyl-2-pentanone	БИ		4	10	4.0	ug/kg	05/18/2021 1003
Methyloyolohexane	ND		1	5.0	2.0	ug/kg	05/18/2021 1003
Methylene chloride	ND		1	5.0	2.0	ug/kg	05/18/2021 1003
Styrene	ND		1	5.0	2.0	ug/kg	05/18/2021 1003
1,1,2,2-Tetrachloroethane	ND		1	5.0	2.0	ug/kg	05/18/2021 1003
Tetrachloroethene	ND		1	5.0	2.0	ug/kg	05/18/2021 1003
Toluene	ND		1	5.0	2.0	ug/kg	05/18/2021 1003
1.1,2-Trichioro-1,2,2-Trifluoroethane	ND		1	5.0	2.0	ug/kg	05/18/2021 1003
1.2,4-Trich:orobenzene	ND		1	5.0	2.0	ug/kg	05/18/2021 1003
1.1.1-Trichioroethane	ND		1	5.0	2.0	ug/kg	05/18/2021 1003
1,1,2-Trichloroethane	ND		1	5.0	2.0	ug/kg	05/19/2021 1003
1:1:5 11101115155115110			·				

LOQ - Limit of Quantilation

 $ND\cong Not \ detected \ et \ {\it cr} \ {\it above the } D_{\rm u}$

N = Receivery is out of oftenta

 $J = Estimated results : JOQ and <math>\geq DE$ DL = Delection Cmit

P = The RPB between two OC columns exceeds 40%

 \uparrow = RSD is out of calleda

→ RPD is suit of crharla.

Volatile Organic Compounds by GC/MS - MB

Sample ID: WQ92636-001

Batch: 92636

Matrix: Solid Prep Method: 5035

Analytical Method: 8260D

Parameter	Result	Q pil	LOQ	DL	Units	Analysis Date
Trichlorcethene	ND	1	5.0	2.0	ug/kg	06/18/2021 1003
Trichlorofluoromethano	ND	1	5.0	2.0	ug/kg	05/18/2021 1003
Vlnyl chloride	ND	1	6.0	3.0	ug/kg	05/18/2021 1003
Xylenes (total)	ND	1	10	40	ug/kg	05/18/2021 1003
Surrogate	Q %Rec	Acceptance Limit				
Bromafluorobenzene	107	47-138	·			
1.2-Dichloroeinane-d4	88	53-142				
Toluene-d8	99	68-124				

LOQ = Limit of Quantitation

ND = Not detected at or above the DL

DL n Detection Limit.

N = Recovery is out of cateria.

 $J = \text{Bilimated result} \in \text{LOQ and } \succeq \text{DL}$

 θ = The RPD between two GC cultimits exceeds 40%

* = RSD le out of cillaria

· = RPD is out of criteria

Volatile Organic Compounds by GC/MS - LCS

Sample ID: WQ92636-002 Batch: 92636 Matrix: Solid Prep Method: 5035

Analytical Method: 8260D

	Spike	D=#				%Rec	
Parameter	Amount (ug/kg)	Result (ug/kg)	Q	pil	% Rec	Limit	Analysis Date
Acetone	100	94		1	94	60-140	05/18/2021 0918
Benzene	50	51		1	101	70-130	05/18/2021 0918
Bromodichloromethane	50	48		1	96	70-130	05/18/2021 0918
Bromoform	50	51		1	102	70-130	05/18/2021 0916
Bromomethane (Methyl bromido)	50	50		1	100	70-130	06/18/2021 0918
2-Butanone (MEK)	100	07		1	87	60-140	06/18/2021 0916
Carbon disulfide	50	52		1	104	70-130	05/18/2021 0916
Carbon tetrachloride	50	51		i	102	70-130	05/18/2021 0916
Chlorobenzene	50	52		1	104	70-130	05/18/2021 0916
Chloroethane	50	52		1	104	70-130	05/18/2021 0916
Chloroform	50	47		1	94	70-130	05/18/2021 0916
Chloromethana (Mathyl chloride)	50	49		1	98	60-140	05/18/2021 0916
•	50	53		1	107	70-130	05/18/2021 0916
Cyclohexane	50	49		1	98	70-130	05/18/2021 0916
1.2-Dibromo-3-chloropropane (DBCP)		46		1	91	70-130	05/18/2021 0916
Dibromochloromethane	50 50	50		4	89	70-130	05/18/2021 0916
1,2-Dibromoethane (EDB)	5D	53		1	1D5	70-130	/ 05/18/2021 0916
1,2-Dichlorabanzone	50	5 3		1	109	70-130	05/18/2021 0916
1,3-Dichlarabenzene		54 53		1	106	70-130	05/18/2021 0916
1,4-Dichlarobanzana	50	53 51		1	102	60-140	05/18/2021 0918
Dichlorodi(luoromethane	50			1	94	70-130	05/18/2021 0918
1,1-Dichloroethane	50	47				70-130 70-130	05/18/2021 0918
1,2-Dichtoroethane	50	40		1	80	70-130 70-130	05/18/2021 0916
1,1-Dichloreathene	50	54		1 1	108 96	70-130 70-130	05/18/2021 0916
cls-1,2-Dichloroethene	50	48			103	70-130	05/18/2021 0916
trans-1,2-Dichlorpethene	50	51		1			05/18/2021 0916
1,2-Dichloropropane	50	47		1	94	70-130	05/18/2021 0916
cls-1,3-Dichlaropropene	50	48		1	95 ^=	70-130	05/18/2021 0916
trans-1,3-Bichloropropene	50	47		1	95	70-130	
Ethylbenzenc	50	54		1	.09	70-130	05/18/2021 0916
2-Hexanore	100	94		1	94	70-130	05/18/2021 0916
laopropylbenzene	50	55		1	110	70-130	05/18/2021 0918
Methyl acetale	50	42		1	83	70-130	05/18/2021 0916
Methyl tertiary butyl ether (MTBE)	50	45		1	90	70-130	05/18/2021 0916
4-Methyl-2-perdanono	100	91		1	91	70-130	05/18/2021 0916
Methylcyclohexane	50	56		1	112	70-130	05/18/2021 0916
Methylene chioride	50	43		1	87	70-130	05/18/2021 0816
Styrene	50	52		1	105	70-130	05/18/2021 0916
f,1,2.2-Tetrachlorcethans	5C	52		4	104	70-130	05/18/2021 0916
Tetrachlorcethene	60	57		1	114	70-130	05/18/2021 0916
Taluene	50	52		1	105	70-130	05/18/2021 0916
1,1,2-Trichloro-1,2,2-Trifluoroethane	50	53		1	106	70-130	05/18/2021 0916
1,2,4-Trichlorobenzene	50	52		1	105	70-130	05/18/2021 0916
1,1,1-T/lchloroeihane	50	51		1	10:	70-130	05/18/2021 0916
1,1,2-Trichloroethane	50	50		1	100	70-130	05/18/2021 0916

LDQ = Limit of Quantitation

AD = Not datacled when above the DL

N ¬ Recovery is out of criter a

DL ¬ Detection Limit

 $_{\rm u}$ = Estimated result < LOQ and \geq DL

F = The RPO between two GC columns expected 40%

^{* =} RSD is out of criteria

^{+ =} RPL0 is out of orlloria

Volatile Organic Compounds by GC/MS - LCS

Sample ID: WQ92836-002

. Batch; 92838

Matrix: Solid Prep Method: 5036

Analytical Method: 8260D

Parameter	Spike Amount (ug/kg)	Result (ug/kg) Q	DII	% Rec	%Rec Limit	Analysis Date
Trichloroethene	50	50	1	99	70-130	05/18/2021 0916
Trichlorofluoromothane	50	52	1	193	70-130	05/18/2021 0916
Vinyl chlorido	50	52	1	105	70-130	05/18/2021 0916
Xylenes (total)	100	110	1	107	70-130	05/18/2021 0916
Surrogate	Q %Rec	Acceptance Limit				
Bromofluorobenzene	102	47-138				
1,2-Dichtoroethane-d4	86	53-142				
Toluene-d8	101	68-124				

LOQ a Limit of Quantistion

ND = Not detected at or above the DL

N = Recovery is out of critoria

DL = Detector Limit

J = Est mated result < LCQ and ≥ DL.

P = The RPD individen [vib GC epiturns exceeds 40%

* = RSD is aid of college

+ = RPD is but of ofterta-

Volatile Organic Compounds by GC/MS - Duplicate

Sample ID: WE10034-001DU

Batch: 92636

Matrix: Solid Prep Method: 5035

Analytical Mothod: 8260D

Persentete		Sample						
Acebors	Barameter			Q Dti	% RPD		Analysis Date	
Boraceles ND ND ND 1 0.00 20 05/18/2021 1722 Bromoethere (Methyl bromide) ND ND 1 0.00 20 05/18/2021 1723 Bromoethere (Methyl bromide) ND ND 1 0.00 20 05/18/2021 1723 Bromoethere (Methyl bromide) ND ND 1 0.00 20 05/18/2021 1722 Carbon disulide ND ND ND 1 0.00 20 05/18/2021 1722 Carbon disulide ND ND ND 1 0.00 20 05/18/2021 1722 Carbon disulide ND ND ND 1 0.00 20 05/18/2021 1722 Carbon disulide ND ND ND 1 0.00 20 05/18/2021 1722 Carbon disulide ND ND ND 1 0.00 20 05/18/2021 1722 Carbon disulide ND ND ND 1 0.00 20 05/18/2021 1722 Carbon disulide ND ND ND 1 0.00 20 05/18/2021 1722 Carbon disulide ND ND ND 1 0.00 20 05/18/2021 1722 Chlorodeline ND ND			•					
Bornordickloromethane ND ND ND 1 0.00 20 05/18/2021 1722								
Bromorbina ND ND ND 1 0.00 20 06/18/2021 1722 1		-						
Bromomettane (Nethyl bromide) ND ND ND 1 000 20 06/18/2021 1722 2-Butanone (MEK) ND ND 1 000 20 06/18/2021 1722 Carbon Iserrachlorido ND ND ND 1 000 20 06/18/2021 1722 Carbon Iserrachlorido ND ND ND 1 000 20 06/18/2021 1722 Carbon Iserrachlorido ND ND ND 1 000 20 06/18/2021 1722 Carbon Iserrachlorido ND ND ND 1 000 20 06/18/2021 1722 Chlororbeméne ND ND ND 1 000 20 06/18/2021 1722 Chlororbeméne ND ND ND 1 000 20 06/18/2021 1722 Chlororbeméne ND ND ND 1 000 20 06/18/2021 1722 Chlororbeméne ND ND ND 1 000 20 06/18/2021 1722 Cyclohexane ND ND ND 1 000 20 06/18/2021 1722				-	•			
2-Buttanone (MEK) ND ND ND 1 0.00 20 06/18/2021 1722 Carbon disulfide ND ND ND 1 0.00 20 06/18/2021 1722 Chlorodenizene ND ND ND 1 0.00 20 06/18/2021 1722 Chlorodenizene ND ND ND 1 0.00 20 06/18/2021 1722 Chlorodenizene ND ND ND 1 0.00 20 06/18/2021 1722 Chlorodenizene ND ND ND 1 0.00 20 06/18/2021 1722 Chlorodenizene ND ND ND 1 0.00 20 06/18/2021 1722 Chlorodenizene ND ND ND 1 0.00 20 06/18/2021 1722 Chlorodenizene ND ND ND 1 0.00 20 06/18/2021 1722 Cyclohexiane ND ND ND 1 0.00 20 06/18/2021 1722 Cyclohe								
Carbon disulfide	•							
Carbon letrachierido ND ND ND 1 0.00 20 05/18/2021 1722 Chlorobinzaña ND ND ND ND 1 0.00 20 05/18/2021 1722 Chloroform ND ND ND ND ND 1 0.00 20 05/18/2021 1722 Chloroform ND								
Chlorobenzaño ND ND 1 0.00 20 05/18/2021 1722 Chlorobenzaño ND ND ND 1 0.00 20 05/18/2021 1722 Chloroform ND ND ND 1 0.00 20 05/18/2021 1722 Chloroform ND ND ND 1 0.00 20 05/18/2021 1722 Chloromethana (Methyl chloride) ND ND ND 1 0.00 20 05/18/2021 1722 Cyclohasñoe ND ND ND ND 1 0.00 20 05/18/2021 1722 Cyclohasñoe ND ND ND ND 1 0.00 20 05/18/2021 1722 Cyclohasñoe ND ND ND ND ND 1 0.00 20 05/18/2021 1722 Cyclohasñoe ND				· ·				
Chloroethane				·				
Chloroform								
Chloromethane (Methyl chloride) ND ND ND 1 0.00 20 0.5/18/2021 1722 1/2-Dibromo-3-chloroprapane (DBCP) ND ND ND 1 0.00 20 0.5/18/2021 1722 1/2-Dibromo-3-chloroprapane (DBCP) ND ND ND 1 0.00 20 0.5/18/2021 1722 1/2-Dibromo-3-chloroprapane (DBCP) ND ND ND 1 0.00 20 0.5/18/2021 1722 1/2-Dibromo-3-chloroprapane (DBCP) ND ND ND 1 0.00 20 0.5/18/2021 1722 1/2-Dibromo-3-chloroprapane ND ND ND 1 0.00 20 0.5/18/2021 1722 1/2-Dibromo-3-chloroprapane ND ND ND 1 0.00 20 0.5/18/2021 1722 1/2-Dibromo-3-chloroprapane ND ND ND 1 0.00 20 0.5/18/2021 1722 1/2-Dibromo-3-chloroprapane ND ND ND 1 0.00 20 0.5/18/2021 1722 1/2-Dibromo-3-chloroprapane ND ND ND 1 0.00 20 0.5/18/2021 1722 1/2-Dibromo-3-chloroprapane ND ND ND 1 0.00 20 0.5/18/2021 1722 1/2-Dibromo-3-chloroprapane ND ND ND 1 0.00 20 0.5/18/2021 1722 1/2-Dibromo-3-chloroprapane ND ND ND 1 0.00 20 0.5/18/2021 1722 1/2-Dibromo-3-chloroprapane ND ND ND 1 0.00 20 0.5/18/2021 1722 1/2-Dibromo-3-chloroprapane ND ND ND 1 0.00 20 0.5/18/2021 1722 1/2-Dibromo-3-chloroprapane ND ND ND 1 0.00 20 0.5/18/2021 1722 1/2-Dibromo-3-chloroprapane ND ND ND 1 0.00 20 0.5/18/2021 1722 1/2-Dibromo-3-chloroprapane ND ND ND 1 0.00 20 0.5/18/2021 1722 1/2-Dibromo-3-chloroprapane ND ND ND 1 0.00 20 0.5/18/2021 1722 1/2-Dibromo-3-chloroprapane ND ND ND 1 0.00 20 0.5/18/2021 1722 1/2-Dibromo-3-chloroprapane ND ND ND 1 0.00 20 0.5/18/2021 1722 1/2-Dibromo-3-chloroprapane ND ND ND 1 0.00 20 0.5/18/2021 1722 1/2-Dibromo-3-chloroprapane ND ND ND 1 0.00 20 0.5/18/2021 1722 1/2-Dibromo-3-chloroprapane ND ND ND 1 0.00 20 0.5/18/2021 1722 1/2-Dibromo-3-chloroprapane ND ND ND 1 0.00 20 0.5/18/2021 1722 1/2-Dibromo-								
Cyclohexañe ND				_				
Commonstration				_				
Distromothoromethane	•			-				
1,2-Diknomoshane (EDS) ND ND ND 1 0.00 20 05/18/2021 1722 1,2-Diknomoshane (EDS) ND ND 1 0.00 20 05/18/2021 1722 1,3-Diknomoshane (EDS) ND ND 1 0.00 20 05/18/2021 1722 1,3-Diknomoshane ND ND ND 1 0.00 20 05/18/2021 1722 1,4-Dikhlorobenzane ND ND ND 1 0.00 20 05/18/2021 1722 1,4-Dikhlorobenzane ND ND ND 1 0.00 20 05/18/2021 1722 1,1-Dikhloroshana ND ND ND 1 0.00 20 05/18/2021 1722 1,1-Dikhloroshana ND ND ND 1 0.00 20 05/18/2021 1722 1,1-Dikhloroshana ND ND ND 1 0.00 20 05/18/2021 1722 1,1-Dikhloroshana ND ND ND 1 0.00 20 05/18/2021 1722 1,1-Dikhloroshana ND ND ND 1 0.00 20 05/18/2021 1722 1,1-Dikhloroshana ND ND ND 1 0.00 20 05/18/2021 1722 1,2-Dikhloroshana ND ND ND 1 0.00 20 05/18/2021 1722 1,2-Dikhloroshana ND ND ND 1 0.00 20 05/18/2021 1722 1,2-Dikhloropropane ND ND ND 1 0.00 20 05/18/2021 1722 1,2-Dikhloropropane ND ND ND 1 0.00 20 05/18/2021 1722 1,2-Dikhloropropene ND ND ND 1 0.00 20 05/18/2021 1722 1/ana-1,3-Dikhloropropene ND ND ND 1 0.00 20 05/18/2021 1722 1/ana-1,3-Dikhloropropene ND ND ND 1 0.00 20 05/18/2021 1722 1/ana-1,3-Dikhloropropene ND ND ND 1 0.00 20 05/18/2021 1722 1/ana-1,3-Dikhloropropene ND ND ND 1 0.00 20 05/18/2021 1722 1/ana-1,3-Dikhloropropene ND ND ND 1 0.00 20 05/18/2021 1722 1/ana-1,3-Dikhloropropene ND ND ND 1 0.00 20 05/18/2021 1722 1/ana-1,3-Dikhloropropene ND ND ND 1 0.00 20 05/18/2021 1722 1/ana-1,3-Dikhloropropene ND ND ND 1 0.00 20 05/18/2021 1722 1/ana-1,3-Dikhloropropene ND ND ND 1 0.00 20 05/18/2021 1722 1/ana-1,3-Dikhloropropene ND ND ND 1 0.00 20 05/18/2021 1722 1/ana-1,3-Dikhloropropene ND ND ND 1 0.00 20 05/18/2021 1722 1/ana-1,3-				-				
1,2-Dichlorobenzene				·				
	1,2-Dibromoothane (EDS)							
A-Dichlorobenzation	1,2-Dichlorobonzene			•				
Applied Note No. N	1,3-Dichlorobenzone	CN	ND	1				
1,1-Dighteroethane	1,4-Dichlarobenzana	ND	ND	1				
1,2-Dichloroethane	Dichlorodifluoromethane	ND	ND	1	0.00			
1,2-Dichlaroethene	1,1-Dichloroethang	ND	ND	1	0.00	20		
Company Comp	1,2-Dichloroethane .	ND	ND	1	0.00	20		
trans-1,2-Dichloroethere ND ND ND 1 0.00 20 05/18/2021 1722 1,2-Dichloropropane ND ND ND 1 0.00 20 05/18/2021 1722 cis-1,3-Dichloropropene ND ND ND 1 0.00 20	1,1-Dichlaroethene	ND	ND	1	0.00	20		
1,2-Dichloropropane	ds-1,2-0'chloroethene	ND	ND	1	0.00	20		
Companies Comp	trans-1,2-Dichloroethene	ND	ND	1	0.00	20		
trans-1,3-Dilchloropropene ND ND 1 0.00 20 05/18/2021 1722 Ethylbenzene ND ND 1 0.00 20 05/18/2021 1722 2-Hexanone ND ND ND 1 0.00 20 05/18/2021 1722 Isopropylbenzeno ND ND ND 1 0.00 20 06/18/2021 1722 Methyl edetate ND ND ND 1 0.00 20 06/18/2021 1722 Methyl edetate ND ND ND 1 0.00 20 06/18/2021 1722 Methyl edetate ND ND ND 1 0.00 20 06/18/2021 1722 Methyl edetate ND ND ND 1 0.00 20 06/18/2021 1722 Methyl edetate ND ND ND 1 0.00 20 06/18/2021 1722 Methyl edetate ND ND 1 0.00 20 06/18/2021 1722 Methyl edetate	1.2-Dichleropropane	ND	ND	1	0.00	20		
Vana-1,3-Dichloropropene ND ND ND 1 0.00 20 0.5/18/2021 1722	cis-1.3-Dichlaropropene	ND	ND	1	0.00	20		
Ethylbenzene ND ND ND 1 0.00 20 05/18/2021 1722 2-Hexanona ND ND ND 1 0.00 20 05/18/2021 1722 Isopropylbenzeno ND ND ND 1 0.00 20 05/18/2021 1722 Methyl acetate ND ND ND 1 0.00 20 05/18/2021 1722 Methyl te/tiery butyl ether (MTBE) ND ND 1 0.00 20 05/18/2021 1722 4-Methyl-2-pentanone ND ND 1 0.00 20 05/18/2021 1722 Methylogolohexane ND ND 1 0.00 20 05/18/2021 1722 Methylogolohexane ND ND ND 1 0.00 20 05/18/2021 1722 Methylene chloride ND ND 1 0.00 20 05/18/2021 1722 Styrene ND ND ND 1 0.00 20 05/18/2021 1722 Styrene ND ND ND 1 0.00 20 05/18/2021 1722 1,1,2,2-Tetrachtoroethene ND ND 1 0.00 20 05/18/2021 1722 Tatrachloroethene ND ND 1 0.00 20 05/18/2021 1722 Totachloroethene ND ND ND 1 0.00 20 05/18/2021 1722 Totachloroethene ND ND ND 1 0.00 20 05/18/2021 1722 1,1,2-Trichloro-1,2,2-Trifluoroothane ND ND 1 0.00 20 05/18/2021 1722 1,1,2-Trichloroethene ND ND ND 1 0.00 20 05/18/2021 1722 1,1,2-Trichloroethene ND ND ND 1 0.00 20 05/18/2021 1722 1,1,1-Trichloroethene ND ND ND 1 0.00 20 05/18/2021 1722 1,1,1-Trichloroethene ND ND ND 1 0.00 20 05/18/2021 1722 1,1,1-Trichloroethene ND ND ND 1 0.00 20 05/18/2021 1722		ND	ND	1	0.00	50		
2-Hexanone ND ND 1 0.00 20 05/18/2021 1722 Isapropylbenzeno ND ND ND 1 0.00 20 05/18/2021 1722 Methyl seklate ND ND ND 1 0.00 20 05/18/2021 1722 Methyl seklate ND ND ND 1 0.00 20 05/18/2021 1722 Methylers butyl ather (MTBE) ND ND 1 0.00 20 05/18/2021 1722 4-Methyl-2-pentlanone ND ND 1 0.00 20 05/18/2021 1722 Methylocolohexane ND ND 1 0.00 20 05/18/2021 1722 Methylocolohexane ND ND 1 0.00 20 05/18/2021 1722 Methylocolohexane ND ND 1 0.00 20 05/18/2021 1722 Styrene ND ND 1 0.00 20 05/18/2021 1722 1,1,2-2-Tetrach.oroethene ND ND 1		ND	ND	1	0.00	20	05/18/2021 1722	
Sappropylbenzeno	•	ND	ND	1	0.00	20	05/18/2021 1722	
Methyl acetate ND ND 1 0.00 20 05/18/2021 1722 Methyl tertiary butyl athor (MTBE) ND ND 1 0.00 20 05/18/2021 1722 4-Methyl-2-pentlanone ND ND 1 0.00 20 05/18/2021 1722 Methylogolohexane ND ND ND 1 0.00 20 05/18/2021 1722 Methylene chloride ND ND 1 0.00 20 05/18/2021 1722 Styrene ND ND 1 0.00 20 05/18/2021 1722 1,1,2.2-Tetrachloroethene ND ND 1 0.00 20 05/18/2021 1722 Totluene ND ND 1 0.00 20 05/18/2021 1722 1,1,2-Trichloro-1,2,2-Trichloroothane ND ND 1 0.00 20 05/18/2021 1722 1,2,4-Trichlorobenzene ND ND 1 0.00 20 05/18/2021 1722 1,1,1-Trichloroethane ND ND 1				1	0.00	20	06/18/2021 1722	
Methyl tertiary butyl athor (MTBE) ND ND 1 0.00 20 05/18/2021 1722 4-Methyl-2-pentlanone ND ND 1 0.00 20 05/18/2021 1722 Methylogolohexane ND ND ND 1 0.00 20 05/18/2021 1722 Methylene chloride ND ND ND 1 0.00 20 05/18/2021 1722 Styrene ND ND 1 0.00 20 05/18/2021 1722 1,1,2.2-Tetrachloroethene ND ND 1 0.00 20 05/18/2021 1722 Totrachloroethene ND ND 1 0.00 20 05/18/2021 1722 Toluene ND ND 1 0.00 20 05/18/2021 1722 1,1,2-Trichloro-1,2,2-Trichloroethane ND ND 1 0.00 20 05/18/2021 1722 1,1,1-Trichloroethane ND ND 1 0.00 20 05/18/2021 1722 1,1,1-Trichloroethane ND ND				1	0.00	20	05/18/2021 1722	
4-Methyl-2-pentlanone ND ND 1 0.00 20 05/18/2021 1722 Methylcyclohexane ND ND ND 1 0.00 20 05/18/2021 1722 Methylche chloride ND ND ND 1 0.00 20 05/18/2021 1722 Styrene ND ND ND 1 0.00 20 05/18/2021 1722 1,1,2,2-Tetrach.oroethene ND ND ND 1 0.00 20 05/18/2021 1722 Totrachloroethene ND ND ND 1 0.00 20 05/18/2021 1722 Totluene ND ND ND 1 0.00 20 05/18/2021 1722 1,1,2-Trichloro-1,2,2-Trifluoroothane ND ND 1 0.00 20 05/18/2021 1722 1,1,2-Trichloro-1,2,2-Trifluoroothane ND ND 1 0.00 20 05/18/2021 1722 1,1,1-Trichlorobenzene ND ND ND 1 0.00 20 05/18/2021 1722 1,1,1-Trichloroethane ND ND ND 1 0.00 20 05/18/2021 1722				1	0.00	20	05/18/2021 1722	
Methylogolohexane ND ND 1 0.00 20 05/18/2021 1722 Methylere chloride ND ND ND 1 0.00 20 05/18/2021 1722 Styrene ND ND ND 1 0.00 20 05/18/2021 1722 1,1,2.2-Tetrach.oroethene ND ND 1 0.00 20 05/18/2021 1722 Tatrachloroethene ND ND 1 0.00 20 05/18/2021 1722 Toluene ND ND 1 0.00 20 05/18/2021 1722 1.1.2-Trichloro-1,2,2-Trifluaroothane ND ND 1 0.00 20 05/18/2021 1722 1.2,4-Trichlorobenzene ND ND 1 0.00 20 05/18/2021 1722 1.1,1-Trichloroethane ND ND 1 0.00 20 05/18/2021 1722 1.1,1-Trichloroethane ND ND 1 0.00 20 05/18/2021 1722							05/18/2021 1722	
Methylydrollekane ND ND ND 1 0.00 20 05/18/2021 1722 Styrene ND ND ND 1 0.00 20 05/18/2021 1722 1,1,2.2-Tetrachloroethene ND ND 1 0.00 20 05/18/2021 1722 Tatrachloroethene ND ND 1 0.00 20 05/18/2021 1722 Toluene ND ND 1 0.00 20 05/18/2021 1722 1.1.2-Trichloro-1,2,2-Trifluaroothane ND ND 1 0.00 20 05/18/2021 1722 1.2,4-Trichlorobenzene ND ND 1 0.00 20 05/18/2021 1722 1.1,1-Trichloroethane ND ND 1 0.00 20 05/18/2021 1722								
Styrene ND ND 1 0.00 20 D5/18/2021 1722 1,1,2,2-Tetrachloroethene ND ND 1 0.00 20 D5/18/2021 1722 Tatrachloroethene ND ND 1 0.00 20 D5/18/2021 1722 Toluene ND ND 1 0.00 20 D5/18/2021 1722 1.1.2-Trichloro-1,2,2-Trifluaroothane ND ND 1 0.00 20 D5/18/2021 1722 1.2,4-Trichlorobenzene ND ND 1 0.00 20 D5/18/2021 1722 1.1,1-Trichloroethane ND ND 1 0.00 20 D5/18/2021 1722								
1,1,2.2-Tetrach.oroethene ND ND 1 0.00 20 05/18/2021 1722 Tatrachloroethene ND ND 1 0.00 20 05/18/2021 1722 Toluene ND ND 1 0.00 20 05/18/2021 1722 1,1,2-Trichloro-1,2,2-Tridluoroothane ND ND 1 0.00 20 05/18/2021 1722 1,2,4-Trichlorobenzeile ND ND 1 0.00 20 05/18/2021 1722 1,1,1-Trichloroethane ND ND 1 0.00 20 05/18/2021 1722	•			-			·	
Tatrachloroethene ND ND 1 0.00 20 05/18/2021 1722 Toluene ND ND 1 0.00 20 05/18/2021 1722 1.1.2-Trichloro-1,2,2-Tridluoroothane ND ND 1 0.00 20 05/18/2021 1722 1,2,4-Trichlorobenzelle ND ND 1 0.00 20 05/18/2021 1722 1,1,1-Trichloroethane ND ND 1 0.00 20 05/18/2021 1722	-							
Toluene ND ND 1 0.00 20 05/18/2021 1722 1.1.2-Trichloroethane ND ND 1 0.00 20 05/18/2021 1722 1.1.2-Trichloroethane ND ND 1 0.00 20 05/18/2021 1722 1.1.1-Trichloroethane ND ND 1 0.00 20 05/18/2021 1722 1.1.1-Trichloroethane ND ND ND 1 0.00 20 05/18/2021 1722	• •							
1.1.2-Trichloro-1,2,2-Trifluoroothane ND ND 1 0.00 20 05/18/2021 1722 1.2,4-Trichlorobenzene ND ND 1 0.00 20 05/18/2021 1722 1,1,1-Trichloroethane ND ND 1 0.00 20 05/18/2021 1722								
1,24-Trichlorobenzene ND ND 1 0.00 20 05/18/2021 1722 1,1,1-Trichloroethane ND ND 1 0.00 20 05/18/2021 1722								
1,1,1-Trichloroethane ND ND 1 0.00 20 05/18/2021 1722								
1,1,11101101000110110								
1,1,2-Trichloroethane ND ND 1 0.00 20 05/18/2021 1722	• *							
	1,1,2-Trichloroethane	ND	ND	1	0.00	20	05/18/2021 1/22	

LOG ~ Limb of Quantitation

VC = Not detected at an above the Ut

N = Recovery is out of criteria

OL = Dissection Limit

 $_{\rm u}$ = Fs/majod result < LOG and > $\rm DL$

P = The RPD between two GC columns expeeds 40%

1 ~ RSD is out of orbaria

+ = RPD is out of criteris.

Volatile Organic Compounds by GC/MS - Duplicate

Sample ID: WE10034-001DU

Batch: 92636

Matrix: Solid Prep Method: 5035

Analytical Method: 8260D

Parameter	Sample Amount (ug/kg)	Result (ug/kg)	Q DII	% RPD	%RPD Limit	Analysis Date
Trichloroethene	ND	ND	1	0.00	20	05/18/2021 1722
Trichlorofluoromethane	ND	Nο	1	0.00	20	05/18/2021 1722
Vlayl chloride	ND	ND	1	0.00	20	05/18/2021 1722
Xy [:] enes (total)	ND	ND	1	0.00	20	05/18/2021 1722
Surrogate	Q % Rec	Acceptance Limit				
Bromofluorobenzene	106	47-138				<u> </u>
1,2-Dichloroethene-d4	89	50-142				
Taluene-d8	98	68-124				

LCQ = Lim : of Quantitation

ND = Not detected at or spove the CC

DL = Detaction Limit $J = Satisfies Log and <math>\geq DL$

N = Recovery is out of oftenia.

P = The RPS between two GC columns exceeds 40%

f = RSD is out of criteria

+ = RPD is out of critor a

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

Page Analytical Services, LLC (formerly Shealy Environmental Services, Inc.)

106 Vantaga Point Drive - West Columbia, SC 28172 (803) 791-9700 - Fax (803) 791-9111 - www.pacelobs.com

Volatile Organic Compounds by GC/MS - MS

Sample ID: W⊡10034-003MS

Batch: 92636

Matrix: Solid Prep Method: 5035

Analytical Method: 8260D

	Sample Amount	Spike Amount	Result			W Bos	%Rec	Analysis Date
Parameter	(ug/kg)	(ug/kg)	(ug/kg)	Q	DII	% Rec	Limit	
Acetone	ND	100	93		1	90	70-130	05/18/2021 1746
Benzene	ND	52	6 3		;	123	70-130	05/18/2021 1746
Bromodichloromethane	ND	52	57		1	110	70-130	05/18/2021 1746
Bromaform	ND	52	58		1	108	70-130	05/18/2021 1746
Bromomethane (Methyl bromide)	ND	52	46		1	88	70-130	05/18/2021 1748
2-Butanone (MEK)	ND	100	61		1	88	70-130	05/18/2021 1748
Carbon disultide	ND	52	65		1	127	70-130	05/18/2021 1746
Carbon tetrachloride	ND	52	71	Ν	1	137	70-130	05/18/2021 1746
Chlorobenzene	ND	52	67		1	1 10	70-130	05/18/2021 1746
Chlorcethanə	ND	52	42		1	82	70-130	05/18/2021 1746
Chloreform	ND	52	60		1	115	70-130	05/18/2021 1746
Chloremethene (Methyl chlorido)	ND	52	38		1	73	60-140	05/18/2021 1746
Сусюћехале	ND	52	85	N	1	164	70-130	05/18/2021 1746
1,2-Dibromo-3-chloroprepane (DBCP)	ND	52	54		1	106	70-130	05/18/2021 1746
Dibromochloromethane	ND	52	53		1	103	70-130	05/18/2021 1746
1,2-Dibromoethane (ED3)	ND	52	56		1	109	70-130	05/18/2021 1746
1,2-Dightorobanzane	ND	52	50		1	97	70-130	05/18/2021 1746
1.3-Dichlorobenzene	ND	52	53		1	103	70-130	05/18/2021 1746
1.4-Dichlerobenzene	ND	52	51		1	98	70-130	05/18/2021 1746
Dichlorodifluoromethane	ND	52	35		1	67	60-140	05/18/2021 1746
1.1-Dich/oroethane	ND	52	62		1	120	70-130	05/18/2021 1746
1,2-Dichioroethane	ND	52	49		1	94	70-130	05/18/2021 1746
	ND	52	75	N	1	145	70-130	05/18/2021 1746
1.1-Dichloroethene cis-1,2-Dichloroethene	ND	52	60	13	i	116	70-130	05/18/2021 1746
	ND	52	65		1	126	70-130	05/18/2021 1746
trans-1,2-Dichlaroothene	ND	52	59		1	113	70-130	05/18/2021 1746
†,2-Djchloropropane		52	55		1	106	70-130	05/18/2021 1746
cia-1,3-Dichloropropene	ND				1	102	70-130	05/18/2021 1746
trens-1,3-Dichlaropropene	ND	52	53			126	70-130	05/18/2021 1746
Ethylbenzene	ND	52	65		1		70-130	05/18/2021 1746
2-Hexanone	ND	100	100		1	98		
Isopropylbanzene	ND	52	74	N	t	144	70-130	05/18/2021 1746
Methyl acetete	ND	52	120	N	1	224	70-130	05/18/2021 1746
Methyl tertiary butyl ether (MTBE)	ND	52	56		1	107	70-130	05/18/2021 1746
4-Methyl-2-pentarione	ND	100	110		1	108	70-130	05/18/2021 1746
Methylcyclohexane	ND	52	88	Ν	1	167	70-130	05/18/2021 1746
Methylene ohloride	ND	52	54		1	105	70-130	05/18/2021 1748
Styrene	ND	52	54		1	104	70-130	05/18/2021 1746
1,1,2,2-Tetrachloroethane	ND	52	85		1	126	70-130	05/18/2021 1746
Tetrachloroethene	ND	52	72	N	1	139	70-130	05/18/2021 1746
Toluene	ND	52	86		1	125	70-130	05/18/2021 1748
1,1,2-Trichloro-1,2,2-Triftuorcelhane	ND	52	86	N	1	165	70-130	05/18/2021 1748
1,2,4-Trichlorobenzene	ND	52	32	N	1	62	70-130	05/18/2021 1748
1,1,1-Trichlorgethane	ND	52	69	N	1	133	70-130	05/18/2021 1746
1,1,2-1'richloroothane	NL)	52	59		1	115	70-130	05/18/2021 1748
1,1,2-1 richkoldotharie	IND	ű.	06		'	110	1.4.100	25.12.2521 11-

 $\mathsf{LOQ} = \mathsf{Lim}(!)$ of Quantitation

 $NO \approx 801$ detacted at or above the OL

N = Recovery is out of critical

Du = Distriction Um.1

 $J=Bst\,mated\,result \leq LOQ\,and \geq DL$

P = The RPU between two QC columns exceede 40%

 $^{+}$ = RSD is out of willers

 \star = RPD is cut of cruaria

Volatile Organic Compounds by GC/MS - MS

Sample ID: WE10034-003MS

Batch: 92636

Matrix: Solid Prop Method: 5035

Analytical Method: 8260D

Sample Amount (ug/kg)	Spike Amount (ug/kg)	Result (ug/kg)	_ Q	Dfl	% Rec	%Rec Limit	Analysis Date
ND	52	62		1	119	70-130	05/18/2021 1748
ND	52	39		1	75	70-130	05/18/2021 1746
Nυ	52	39		1	75 .	70-130	05/18/2021 1746
ND	100	190		ſ	122	76-130	05/18/2021 1748
Q % Re							
100	. 47	'-1 3 8					
107	53	-142					
100	68	1-124					
	Amount (ug/kg) ND ND ND ND Q % Re 100	Amount (ug/kg) ND 52 ND 52 ND 52 ND 52 ND 100 Acce Q % Rec Li 100 47	Amount (ug/kg) Amount (ug/kg) Result (ug/kg) ND 52 62 ND 52 39 ND 52 29 ND 100 130 Q % Rec Acceptance Limit 100 47-138 107 53-142	Amount (ug/kg) Result (ug/kg) Q	Amount (ug/kg)	Amount (ug/kg)	Amount (ug/kg) Amount (ug/kg) Result (ug/kg) Q DH % Rec Limit ND 52 62 1 119 70-130 ND 52 39 1 75 70-130 ND 52 39 1 75 70-130 ND 100 130 1 122 76-130 Q % Rec Limit 100 47-138 107 53-142

LOQ = Unit of Quantitation

ND = Not detected at or applys the DL

N = Recovery is out of criteria

DU ≃ Detection Limit

J = Estimated result < LOQ and > 0L

P = The RPD between two GC columns exceeds 40%

* = R&D is out of criteria

+ ≃ RPD a bull of criteria

Volatile Organic Compounds by GC/MS - MB

Sample ID: WQ92881-001 Batch: 92881

Matrix: Aqueous Prop Method: 5030B

Analytical Method: 8200D

Paramoter	Result	Q DII	LOQ	DL	Units	Analysis Date
1,2-Dichlorobenzene	ND	1	1.0	0.40	ug/L	05/19/2021 2255
Surrogate	Q % Rec	Acceptance Limit				<u>.</u>
Bromofluorobenzene	96	70-130				
1,2-Dichloroe@ane-d4	108	70-130				
Toluene-dB	105	70-130				

LOQ = Umit of Quantilation DL = Detection I lm f

 $ND\cong Nst$ delected at or above the DL

N - Recovery le out of criteria

 $J = Eathmated result < LOQ and <math>\geq CL$.

P = The RPD between two SC columns richaede 40%

f = RSD is out of ofter a

+ = RPD is out of oritoria

Volatile Organic Compounds by GC/MS - LCS

Sample ID: WQ92881-002

Batch: 92881

Matrix: Aqueque Prop Method: 5030B

Analytical Mothod: 8260D

Parameter	Spike Amount (ug/L)	Result (ug/L)	Q	Dil	% Rec	%Rec Limit	Analysis Date
1,2-Dichlorobenzene	50	50		1	99	70-130	05/19/2021 2141
Surrogate	Q %Rec	Acceptant Limit	e.				
Bromofkiorobenzene	92	70-130				·	
1,2-Dichloroethane-d4	95	70-130					
7oluene-d8	96	70-130					

LOG - Umil of Quantitation DL - Detection Limit

ND = Not detacted at or above the DL

J = Cslimated result < 1 CQ and > DL

N = Recovery la out of offer a

• = RSD is out of criteria.

P = The RPD between two GC columns exceeds 40%

÷≃RFS significations

Volatile Organic Compounds by GC/MS - MB

Sample ID: WQ92987-001 Batch: 92987 Matrix: Solid Prep Method: 5035

Analytical	Method:	82 6 0D

Parameter	Result	Q	Dil	LOQ	PL _	Units	Analysis Dato
Acetone	ИП		1	20	8.0	ug/kg	05/20/2021 0953
Benzene	NP		1	6.0	2.0	ug/kg	05/20/2021 0953
Bromodichloromethene	ND		1	6.0	2.0	ug/kg	05/20/2021 0953
Bromoform	ND		1	6.0	2.0	บg/kg	05/20/2021 0953
Bromomethane (Methyl bromlde)	ND		1	5.0	3.0	ug/kg	05/20/2021 0953
2-Butanone (MEK)	ND		1	20	4.0	μg/kg	05/20/2021 0963
Carbon disulfide	ND		1	5.0	2.0	μ g/k g	05/20/2021 0963
Carbon tetraciilorida	CIN		1	5.0	2.0	ug/kg	05/20/2021 0953
Ch.oroberizene	ND		1	5.0	2.0	ug/kg	05/20/2021 0963
Chioroethane .	ND		1	5.0	2.0	ug/kg	05/20/2021 0963
Chloroform	ND		1	5.0	2.0	ug/kg	05/20/2021 0963
Chloromethene (Methyl chtoride)	ND		1	5.0	3.0	ug/kg	05/20/2021 0953
Cydohexarie	ND		1	5.C	2.0	ug/kg	05/20/2021 0953
1,2-Dibromo-3-chloropropane (DBCP)	NΩ		1	5.0	2.0	ug/kg	05/20/2021 0953
Dibromochloromethane	ND		1	5.0	2.0	ug/kg	05/20/2021 0953
1,2-Dibromoethane (EDB)	ND		1	5.0	2.0	ug/kg	05/20/2021 0953
1,2-Dichlorabenzone	ND		1	5.0	2.0	ug/kg	05/20/2021 0953
1.3-Dichlorubenzene	ND		1	6.0	2.0	ug/kg	06/20/2021 0953
1,4-Dichlorobenzene	ND		1	5.0	2.0	ug/kg	05/20/2021 0953
Dichlorodifluoromethane	ND		1	5.0	3.0	ug/kg	05/20/2021 0953
1,1-Dichlordethane	טא		1	5.0	2.0	ug/kg	05/20/2021 0953
1,2-Dichloroethane	ND		1	5.0	2.0	ug/kg	05/20/2021 0953
1,1-Dichlorgethens	ND		1	5.0	2.0	ug/kg	05/20/2021 0953
gis-1,2-Dichloroethene	ND		i	5.0	2.0	ug/kg	06/20/2021 0953
trans-1,2-Dichleroethese	ND		1	5.0	2.0	ug/kg	05/20/2021 0953
1,2-Dichloropropano	ND		1	5.0	2.0	ug/kg	05/20/2021 0953
gls-1,3-Dichloropropone	ND		1	5.0	2.6	ug/kg	05/20/2021 0953
trans-1,3-Dichloropropene	ND		1	5.0	2.0	ug/kg	05/20/2021 0953
Ethylbenzene	ND		1	5.0	2.0	ug/kg	05/20/2021 0953
2-Hexanone	NO		1	10	4.0	ug/kg	05/20/2021 0953
Isopropylbenzene	ND		1	B.C	2.0	ug/kg	05/20/2021 0963
Methyl acetate	ND		1	6.C	2.0	ug/kg	05/20/2021 0963
Methyl tertiary butyl ether (MTBE)	ND			5.0	2.0	ug/kg	05/20/2021 0963
4-Methyl-2-pertanone	ND		1	10	4.0	ug/kg	95/20/2021 0953
Methy.cyclohexane	ND		1	5.0	2.0	ug/kg	05/20/2021 0953
Methylene chloride	ND		1	5.0	2.0	ug/kg	05/20/2021 0953
Styrone	ND		1	5.0	2.0	ug/kg	05/20/2021 0853
1,1,2,2-Tetrachloroethane	ND		1	5.0	2.0	ug/kg	05/20/2021 0953
Tetrachiorosthene	ND		1	5.0	2.0	ug/kg	06/20/2021 0953
Toluene	ND		1	5.0	2.0	ug/kg	05/20/2021 0950
1,1,2-Trichloro-1,2,2-Trifluoroethano	ND		1	5.0	2.0	ug/kg	05/20/2021 0950
1.2.4-Trichlorobenzene	ND		1	5.0	2.0	ug/kg	05/20/2021 0953
1,1,1-Trichloroethane	ND		1	5.0	2.0	ug/kg	05/20/2021 0953
1,1,2-Trichloroetiane	ND		1	5.0	2.0	ug/kg	05/20/2021 0953
1, 1,z=1 Hanzardoulario	140		·	0.0		- o o	

 $L\Omega Q \approx Limit of Quartitation$

NB = Not dotagod at or above lite DL

N = Recovery is out of ofteria

DC = Diglocolon Digit.

 $J = Estimated result < LOC and <math>\geq D E$.

P = The RPO between two GC columns necessis 40%

^ = RSD is out of criteds

+ = RPN is but of criteria

Volatile Organic Compounds by GC/MS - MB

Sample ID: WQ92987-001 Batch: 92987

Matrix: Solid Prop Method: 5035

Analytical Method: 8260D

Parameter	Rosult	: 0	וום נ	LOQ	DL	Units	Analysis Date
Trichlorgethene	ND		1	5.0	2.0	ug/kg	05/20/2021 0953
Trichiorofluoromethane	ND		1	5.0	2.0	ug/kg	05/20/2021 0953
Vlnyl chloride	ND		1	5.0	3.0	ug/kg	06/20/2021 0953
Xylenes (totat)	Ир		1	10	4.0	ug/kg	05/20/2021 0953
Surregate	Q 9	% Rec	Acceptance Limit				
Bromofluorobenzene		106	47-138	,			
1,2-Dichloroothane-d4		100	53-142				
'Foluene-d8		101	88-124				

£OQ = Limit of Quantillation

ND = No: detacted at or above the DL

N = Recovery is out of orfleds

DL - Detaction Limit

 $J=EstlinStep fessible LOQ and <math display="inline">\gtrsim DL$

P σ The RPD botwear two GC columns exceeds 40%

 \bullet = RSD is out of pritaria

- = RPD is cut of charts

Sample ID: WQ92987-002

Batch: 92967

Matrix: Soiid Prep Method: 5035

Analytical Method: 8280D

	Spike Amount	Result				%Roc	
Parameter	(ug/kg)	(ug/kg)	a	Dil	% Rec	Limit	Analysis Date
Acetane	100	140	N	1	143	60-140	06/20/2021 0908
Benzene	50	51		1	103	70-130	05/20/2021 0908
Brornodichloromethane	50	55		1	110	70-130	05/20/2021 0908
Bromoform	50	54		1	109	70-130	05/20/2021 0908
Bromomethene (Methyl bromide)	50	44		1	98	70-130	05/20/2021 0908
2-Butanone (MEK)	100	120		1	12 2	60-140	05/20/2021 0904
Carbon disulfide	50	52		1	104	70-130	05/20/2021 0904
Garbon tetrachloride	50	54		1	108	70-130	05/20/2021 0904
Chlorobenzone	50	52		1	1C3	70-130	05/20/2021 090
Chloroelhane	Б0	45		1	90	70-130	05/20/2021 0900
Chioraíarm	50	52		1	104	70-130	06/20/2021 0909
Chloromethano (Methyl chloride)	50	39		1	78	60-140	06/20/2021 0908
Cyclohexana	50	50		1	99	70-130	06/20/2021 0908
1,2-Diaromo-3-chloropropane (DHCP)	50	49		1	97	70-130	05/20/2021 0908
Dibramachlarome th ane	50	49		1	99	70-130	06/20/2021 0908
1,2-Dibromoethane (⊟DB)	50	52		1	105	70-130	05/20/2021 0908
1,2-Dichloroberizene	50	49		1	99	70-130	05/20/2021 0908
1.3-Dichlorobenzene	50	50		1	100	70-130	05/20/2021 0908
1,4-Dichlorobenzene	50	50		1	100	70-130	05/20/2021 090
Dichlorodifluoromethane	50	35		1	70	80-140	05/20/2021 090
1,1-Dichloroethane	50	52		1	105	70-130	05/20/2021 090/
1,2-Dicklorgethane	50	50		1	100	70-130	05/20/2021 090/
1,1-Dichloroothene	50	50		1	100	70-130	05/20/2021 0908
cls-1,2-Dicaloroethene	50	62		1	104	70-530	05/20/2021 0908
trans-1,2-Dichloroethene	50	54		1	108	70-130	05/20/2021 0904
1,2-Dichloropropane	50	60		1	100	70-130	05/20/2021 090
cls-1,3-Dichloropropene	50	53		1	106	70-130	05/20/2021 090
trans-1,3-Dichloroproperie	50	52		1	104	70-130	05/20/2021 090
Ethylbonzene	50 .	54		1	108	70-130	05/20/2021 0900
2-Hexanane	100	110		1	108	70-133	05/20/2021 090
leopropylbanzene	60	54		1	107	70-130	05/20/2021 090
Methyl ecetate	5 0	44		1	87	70-130	05/20/2021 090/
Methyli tertiary butyl ether (MTBE)	60	51		1	102	70-130	05/20/2021 0908
•	100	98		1	98	70-130	06/20/2021 090
4-Methyl-2-pentanone	50	54		1	108	70-130	05/20/2021 090
Methyloydohaxano	50	48		1	95	70-130	05/20/2021 090
Methylene chlorida	50	53		1	107	70-130	05/20/2021 090
Styrene				1	101	70-130	05/20/2021 090
1,1,2,2-Tetrachloroethane	50 50	50 55		1	111	70-130	05/20/2021 090
Totrachloroethene	50 50	53		1	107	70-130	05/20/2021 090
Toluene	50 50	53 51		1	103	70-130	05/20/2021 090
1,1,2-Trichloro-1,2,2-Triftuoroethane		51 56		1	113	70-130	05/20/2021 090
1,2,4-Trichlorobenzeno	50 50			1	108	70-130 70-130	05/20/2021 090
1,1,1-Trichloroethane	50	54 54				70-130 70-130	05/20/2021 090
1,1,2-Trichloroethane	50	51		1	103	/ W 100	AALERIAAS I ABO

LOO = Unit of Quart fation

Dit - Delection Limit

ND - Natidetected at or above the DC

N = Recovery is out of criteria

 $JG \leq \delta_{DG} |DOJ| \geq \|U_{CST}\|_{DdS} = 0.$

P = The RPD between two GC columns exceeds 40%

• = RSD is out of criteria

→ RPD te cut of critoria.

Papa Analytical Services, LLC (formerly Shooty Environmental Services, Inc.)

¹⁰⁶ Vantage Pulnt Crive West Columbia, SC 29172 (803) 791-9700 Fax (803) 791-9111 www.paceleos.com

Volatile Organic Compounds by GC/MS - LCS

Sample ID: WQ92987-002 Batch: 92987

Matrix: Solid Prep Method: 5035

Analytical Method: 8260D

Parameter	Spike Amount (ug/kg)	Result (ug/kg) Q	Dil	% Roc	,%Rec Limit	Analysis Date
Trichlomethene	50	53	1	107	70-130	05/20/2021 0908
Trichlorofluoromethane	50	46	1	91	70-130	05/20/2021 0908
Vinyl chloride	50	37	1	74	70-130	05/20/2021 0908
Xylenes (total)	100	110	1	109	70-130	05/20/2021 0908
Surrogate	Q % Rec	Acceptance Limit				
Bramafluorobenzene	106	47-138			_	
1.2-Dichlorgethane-d4	103	53-142				
Tolueno-d8	106	68-124				
				•		

LOC = Limit of Quantilatron

 $ND \approx N \omega t$ calcoled all or above the DL

 $J = Estimated result < LOQ and <math>\geq DL$

N = Recovery is aution afterial

+ = RPD is out of propin

DL = Orțectan Limi) * = RSD is out of calleria P = The RHD between two GC columns exceeds 40%

Volatile Organic Compounds by GC/MS - LCSD

Sample ID: WQ92987-003

Batch: 92987 Analytical Method: 8260D Matrix: Solid Prep Method: 5035

Spike %Rec Amount Result % RPD % RPD Analysis Date ā % Rec Limit Limit Dil **Parameter** (ug/kg) (ug/kg) 140 2.0 60-140 20 05/20/2021 0931 100 140 1 Асеюле 101 2.0 70-130 20 05/20/2021 0931 50 50 1 Benzene 109 **C.76** 70-130 20 05/20/2021 0931 80 54 Bromodichloromothane 20 05/20/2021 0831 0,051 70-130 54 109 50 Hromoform. 05/20/2021 0931 90 70-130 20 45 2.4 Bromornethane (Methyl bromide) 50 05/20/2021 0931 60-140 20 123 0.372-Butanone (MEK) 100 120 05/20/2021 0931 70-130 20 1 10% 3.0 Carbon disulfide 50 61 06/20/2021 0991 20 103 5.0 70-130 50 51 1 Carbon tetrachloride 70-130 20 05/20/2021 0931 102 1.4 1 Chlorobenzeno 5C 51 70-130 20 05/20/2021 0931 2.8 92 Chloroethage 50 46 1 06/20/2021 0931 50 51 1 102 2.5 70-130 20 Chloraform 05/20/2021 0931 78 0.2460-140 20 Chloromethane (Methyl chloride) 50 39 1 05/20/2021 0931 3.9 70.130 20 50 48 1 96 Cyclohexane 05/20/2021 0931 0.091 70-130 20 50 48 1 97 1,2-Dibromo-3-chloropropane (DRCP) 05/20/2021 0931 0.87 70-130 20 98 50 49 1 Dibramachleromothane 107 1.8 70-130 20 05/20/2021 0931 50 53 1 1,2-Dibromoethane (EDB) 20 05/20/2021 0931 50 48 1 97 2.2 70-130 1.2-Dichlarobenzene 20 05/20/2021 0931 1 99 1.2 70-130 50 50 1,3-Dichlarobonzene 0.27 20 05/20/2021 0931 100 70-130 50 50 1 1.4-Dichlerobonzene 05/20/2021 0931 68 2.5 60-140 20 50 34 Dichlorodifluoromethane 101 3.8 70-130 20 05/20/2021 0991 1.1-Dichloroathane 50 51 70-130 20 05/20/2021 0991 98 18 1.2-Dichloroethane 50 49 05/20/2021 0991 97 3.2 70-130 20 80 48 3 1,1-Dichloroethene 102 70-130 20 06/20/2021 0931 51 1 1.6 50 cls-1.2-Dichleroethene 103 4.7 70-130 20 06/20/2021 0931 1 50 51 trans-1,2-Dichloroethene 20 05/20/2021 0931 1 , 100 0.34 70-130 5C 50 1,2-Dichloropropane 70-130 20 05/20/2021 0931 53 1 107 0.1250 cis-1.3-Dichloroprocene 20 05/20/2021 0931 104 0.25 70-130 50 52 1 trans-1.3-Dicaloropropene 20 05/20/2021 0931 107 1.1 70-130 60 54 1 Ethylbenzene 20 05/20/2021 0931 110 1.6 70-130 1 2-Hoxanone 100 110

٦

Isopropylbarizone

4-Methyl-2-pentanone

1,1,2,2-Tetrach!aroethano

1.2.4-Trichlurobenzene

1.1.1-Trichlomethene

t,1,2-Trichlorgethane

Methyloyclohexane

Methylene chloride

Tetrachlomethene

Styrene

Taluene

Methyl tertlary butyl ether (MTBE)

1,1,2-Trichlore-1,2,2-Trifluoroethane

Methyl acetate

ND = Not detacted at or above the DL

N = Hecovery is out of criteria

DL - Delection Limit

 $J = \mathsf{Rollimated}(\mathsf{result} < \mathsf{LCQ}(\mathsf{and} > \mathsf{IJ}).$

P=1ha RPD between Job GC columns exceeds 40%

20

20

20

20

20

20

20

20

20

20

20

20

20

20

70-130

70-130

70-130

70-130

70-130

70-130

70-130

70-130

70-130

70-130

70-130

70-130

70-130

70-130

05/20/2021 0931

05/20/2021 0931

05/20/2021 0931

05/20/2021 0931

05/20/2021 0931

05/20/2021 0931

Q5/20/2021 C931

05/20/2021 0931

05/20/2021 0931

06/20/2021 0931

06/20/2021 0931

05/20/2021 0931

05/20/2021 0931

05/20/2021 0931

52

44

51

100

51

47

63

51

53

52

52

55

52

52

+ = RPD is aut of citter a

3.0

0.22

0.28

2.0

5.3

12

1.6

1.9

3.9

2.0

1.2

1.8

3.8

1.8

104

102

100

102

94

105

103

106

104

104

111

104

105

87

1

1

1

1

1

1

1

1

١

Note: Calculations are performed before rounding to avoid round-off errors in calculated results

50

50

50

100

50

50

50

50

50

50

50

50

50

50

^{* =} RSD is out of oritor a

Pada Analytical Scryices, LLC (formerly Sheary Environmental Services, Inc.)

¹⁰⁸ Vantage Point Drive West Columbia, SC 29172 (503) 791-9700 Fex (803) 791-9111 www.pacelabs.com

Volatile Organic Compounds by GC/MS - LCSD

Sample ID: WQ929874003 Batch: 92987

Matrix: Solid Prep Method: 5035

Analytical Method: 82600

Parameter	Spike Amount (ug/kg)	Result (ug/kg) Q	Dil	% Rec	% RPD	%Rec Limit	% RPD Limit	Analysis Date
enertteorolden	50	52	1	104	2.6	70-130	20	05/20/2021 0931
Trichlorofluoromethane	50	45	1	89	2.7	70-130	20	05/20/2021 0931
Vinyl chloride	50	37	1	74	0.66	70-130	20	05/20/2021 0931
Xylenes (total)	100	110	1	107	2.5	70-130	20	05/20/2021 0931
Surrogate	Q % Roc	Acceptance Limit	•					
Bromofluorobenzene	103	47-138					_	 -
1,2-Dichtoroethene-d4	103	53-142						
Tolueno-d8	104	68-124						

LOQ = Limit of Quantilation

 $\Omega L = Datablina Limit$

ND n Not delected at an above the DL

N = Recovery is but of criteria

 $J \in \mathsf{Estimated} \ \mathsf{result} \leq \mathsf{LOQ} \ \mathsf{gate} \geq \mathsf{DL}$

* = R8D is out of or teris

P = The RPD between two GC columns occasion 40%

+ - RPD is due of critaria

Semivolatile Organic Compounds by GC/MS - MB

Sample ID: WQ91939-001 Batch: 91939

Analytical Method: 8270E

Matrix: Solid Prep Method: 3546

Prep Date: 05/11/2021 2048

Parameter	Result	a	Dil	LOQ	DL	Unite	Analysis Date
Aceraphthene	ND		1	2.7	0.83	ug/kg	05/25/2021 1532
Acenaphthylene	ND		1	2.7	0.95	ug/kg	06/25/2021 1532
Acetophenone	ND		1	13	5.0	ug/kg	05/25/2021 1532
Anthragene	ND		1	2.7	á.51	ug/kg	05/25/2021 1532
Atrazine	ND		1	13	5.0	ug/kg	05/25/2021 1532
Senzaldehyde	ND		1	13	5.0	ug/kg	05/25/2021 1532
Benzo(a)anthracene	ND		1	2.7	0.59	ug/kg	05/25/2021 1532
Benzo(a)pyrana	ND .		1	2.7	0.86	ug/kg	05/25/2 021 1532
Benzo(b)fluorenthene	ND		1	2.7	0.50	ug/kg	05/26/2021 1532
Benzo(g,h,l)perylana	ND		1	2.7	0.66	ug/kg	05/25/2021 1532
Benzo(k)fluoranthene	NU		1	2.7	0.48	ug/kg	05/25/2021 1532
1,1'-Biphenyl	ND		1	13	5.0	ug/kg	05/25/2021 1532
4-Bromopheriyl phanyl other	ND		1	13	6.0	ug/kg	05/25/2021 1532
Butyl benzyl phthalate	ND		1	13	6.0	ug/kg	05/25/2021 1532
Caprolactarn	ND		1	13	6.0	ug/kg	05/25/2021 1532
Cerhazole	ND		1	13	5.0	ug/kg	05/25/2021 1532
bis (2-Chlaro-1-mathylethyl) ether	ND		1	19	5.0	ug/kg	05/25/2021 1532
4-Chlora-3-methyl phenol	ND		1	13	5.0	ug/kg	05/25/2021 1532
4-Chlorgariline	ND		1	13	5.0	ug/kg	05/25/2021 1532
bis(2-Chloroethoxy)methano	ND		1	13	5.0	ug/kg	05/25/2021 1532
bis(2-Chloroethyl)ether	ND		1	13	5.0	ug/kg	05/26/2021 1532
2-Chloronaph:halena	ND		1	13	5.0	ug/kg	05/26/2 021 1 532
2-Chlorephenol	ND		1	13	5.0	ug/kg	05/25/2021 1532
4-Chlarophonyl phenyl ether	ND		1	13	5.0	ug/kg	05/25/2021 1532
Chrysena	ND		1	2.7	0.45	ug/kg	05/25/2021 1532
Dibenzo(a,h)anthracene	ND		1	2.7	0.51	ug/kg	05/25/2021 1532
Dibenzofuran	ND		1	13	5.0	ug/kg	05/25/2021 1502
3,3'-Dichlorobenzidine	ND		1	13	5.0	u g /kg	05/2 5/2 021 1532
2,4-Dichlorophenol	ND .		1	13	5.0	ψ g/k g	05/25/2021 1532
Diethylphthalate	NÐ		<	13	5.0	ug/kg	05/25/2021 1532
Dimethyl phthalate	ND		1	13	7.4	ug/kg	06/25/2021 1532
2,4-Dimethylphenol	ND		1	13	5.0	ug/kg	05/25/2021 1532
Di-n-butyl phthalate	5.1	J	1	13	5.0	ug/ kg	05/25/2021 1532
4.6-Dinitro-2-methylphenol	ND		1	67	25	ug/kg	05/25/2021 1532
2.4-Dinitrophenol	ND		1	67	25	ug/kg	05/25/2021 1532
2,4-Dinitroioluene	ND		1	27	10	ug/kg	05/25/2023 1532
2,6-Dinitrotoluene	ND		1	27	10	ug/kg	05/25/2021 1532
Di-n-octylphthalate	ND		1	13	5.0	ug/kg	05/25/2021 1532
bls(2-5thylhexyl)phtha.ate	ND		1	67	25	ug/kg	05/26/2021 1532
Fluoranthene	ND		1	2.7	0.42	ug/kg	05/26/2021 1532
Fluorene	ND		1	2.7	0.57	ug/kg	05/25/ 20 21 1532
Hoxachlorobenzene	ND		1	13	5.0	ug/kg	05/26/2021 1532
Hexachlorobutadierre	ND		1	13	5.0	ug/kg	05/26/2021 1532
Hexachlorocyclopentadiene	ND		. 1	67	25	ug/kg	05/25/2021 1502
Heyaralia locyclobel iradie:16	140						

LOQ o Limit of Quantitation

|ND| = Not disclosed at or above the DL.

N = Recovery is out of calleria.

DI. = Celection Limit

 $J = Fatimatori contlik LOQ and <math>\geq DL$

 $P \sim T_{\rm HB}$ HPD between two GC columns exceeds 40%

N=RSD siguit of oftens

+ = RPD is aut of criteria.

Semivolatile Organic Compounds by GC/MS - MB

Sample ID: WQ91939-001 Batch: 91939

Analytical Method: 8270E

Matrix: Solid Prop Method: 3546

Prep Date: 05/11/2021 2048

Parameter	Result	Q DII	LOQ	DL	Units	Analysis Date
Hexachloroethane	ND .	1	13	5.0	ug/kg	05/25/2021 1532
Indeno(1,2,3-c,d)pyrene	ND	1	2.7	1.0	ug/kg	05/25/2021 1532
Isophorone	ИD	1	13	5.0	ug/kg	05/25/2021 1532
2-Methylnaphthaleno	NO	1	2.7	0.99	ug/kg	05/25/2021 1532
2-Methylphanol	ND	1	13	5.0	υg/kg	05/25/2021 1532
3+4-Methylphenol	ND	1	27	10	ug/kg	05/25/2021 1532
Naphihalene	ND	1	2,7	0.97	ug/kg	05/25/2021 1532
2-Nitroaniline	ND	:	27	10	ug/kg	05/25/2021 1532
3-Nitroaniline	ND	1	2/	10	ug/kg	05/25/2021 1532
4-NKroanlline	ND	1	27	10	ug/kg	05/25/2021 1532
Nitrobenzene	ND	1	13	5.0	ug/kg	05/25/2021 1832
2-Nitrophenol	ND .	1	27	10	ug/kg	05/25/2021 1532
4-Nitrophenol	ND	1	67	25	ug/kg	06/25/2021 1532
N-N/trosodi-n-propylamlne	ND	1	13	5.0	ug/kg	06/25/2021 1532
N-Nitrosodiphenylamine (Diphenyle	mine) ND	1	13	5.0	ug/kg	05/25/2021 1532
Pentachlorophenol	ND	1	67	25	ug/kg	06/25/2021 1532
Phenanthrene	No	1	2.7	0.72	ug/kg	06/25/2021 1532
Paenol	ND	1	13	5.0	ug/kg	05/25/2021 1532
Pyrene	ND	1	2.7	0.50	ug/kg	05/25/2021 1532
2.4,6-Trichioraphenol	ND	1	13	5.0	ug/kg	05/25/2021 1532
2 4,6-Trichiorachenol	ND	1	13	5.0	ug/kg	05/25/2021 1532
Surrogate	Q % Rec	Acceptance Limit				
2-Fluorobj ph enyl	99	33-102	-			
2-Fluorophenol	98	35-115				
Nitrobonzene-d5	99	22-109				
Phenol-d5	110	33-122				
Terphenyl-d14	108	41-120				
2,4.6-Tribromopheno ^J	109	30-117				

LOC, a Limit of Quartilation

ND = No: detector; at or above the DL

N = Receivery is out of criteria

Du = Delection Limit

J = Estimaten result < 1,0Q and > DL

P = The RPC between two OC columns exceeds 40%

1= RSD is out of criteria.

 \pm = $80^{\circ}3$ is all; of otheria

Semivolatile Organic Compounds by GC/MS - LCS

Sample ID: WQ91939-002

Batch: 91939

Analytical Method: 8270E

Matrix: Solid Prep Method: 3548

Prep Date: 05/11/2021 2048

Parameter	Spike Amount (ug/kg)	Result (ug/kg)	Q	DII	% Rec	%Rec Limit	Analysis Date
Acenaphthono	130	100		1	79	12-111	06/24/2021 1209
Açanaphthylone	130	120		1	87	44-122	05/24/2021 1209
Acelaphonana	130	110		1	84	48-11 1	05/24/2021 1209
Anthracena	130	1 1 0		ţ	84	16-122	05/24/2021 1209
Atrazine	130	96		1	72	48-116	05/24/2021 1209
Benzaldeityde	130	80		1	80	10-110	05/24/2021 1209
Benzo(e)enthracene	130	110		1	83	4C-121	05/24/2021 1209
Benzo(a)pyrene	130	140		1	104	36-114	05/24/2021 1209
Banzo(b)fluoranthene	130	120		1	89	38-123	05/24/2021 1209
Benzo(g,h,l)perylene	133	110		1	84	43-120	05/24/2021 1209
Benzo(k)fluoranthene	130	120		1	90	40-12€	05/24/2021 1209
1,1'-8lphenyl	130	110		1	84	49-110	05/24/2021 1209
4-Bromophonyl phenyl ether	130	130		1	101	46-118	05/24/2021 1209
Butyl benzyl phthalate	130	150		1 1	111	46-128	05/24/2021 1209
Caprolactam	130	100		1	76	43-121	05/24/2021 1209
Carbazole	130	110		1	82	47-128	06/24/2021 1209
bis (2-Chloro-1-methylethyl) ethar	130	130		1	98	31-102	05/24/2021 1209
4-Chloro-3-methyl phenol	130	110		1	81	49-118	05/24/2021 1209
1-Chloroaniline	130	93		1	70	17-106	06/24/2021 1209
bla(2-Chloroethoxy)methane	130	110		1	83	39-108	05/24/2021 1209
bis(2-Chloroethyl)ether	130	130		1	98	32-105	05/24/2021 1209
2-Chloronaghthalene	130	110		1	83	31-127	05/24/2021 1209
2-Chlorophonol	130	110		1	79	37-106	05/24/2021 1209
4-Chlorophenyl ohenyl ether	130	120		1	87	47-118	05/24/2021 1209
Chrysene	130	110		1	83	41-124	05/24/2021 1209
Dibenzo(a,h)anthrecene	130	120		1	87	38-125	05/24/2021 1209
Dibenzofuran	130	110		1	83	45-112	05/24/2021 1209
3,3'-Dichlorobenzidine	130	100		1	78	10-119	05/24/2021 1209
2,4-Dichlorophenol	130	110		1	84	41-113	05/24/2021 1209
Diethylphthalate	130	110		1	80	49-123	05/24/2021 1209
Dimethyl phthalate	130	120		1	86	48-120	05/24/2021 1209
2,4-Dimethylphenol	130	120		1	92	33-123	05/24/2021 1209
Di-n-butyl phthalate	130	120		1	89	51-129	05/24/2021 1209
4,6-Dinitro-2-mothylphenol	130	72		1	54	40-130	05/24/2021 1209
2,4-Dinitrophenal	270	76	N	1	28	32-115	06/24/2021 1209
2,4-Dinitrololueno	130	110		1	85	48-124	05/24/2021 1209
2,6-Dinitrolaluene	130	120		1	82	47-125	05/24/2021 12 0 9
Di-π-octylphthafate	130	120		1	83	49-142	05/24/2021 1209
bis(2-Ethylhexyl)ahthalate	130	130		1	101	45-128	05/24/2021 1209
Fluoranthene	130	100		1	75	26-133	06/24/2021 1209
F'uorene	130	100		1	79	19-108	05/24/2021 1209
Hexachlorobenzene	130	130		1	69	44-122	05/24/2021 1209
Hexachlorobutadiene	130	110		ſ	79	33-103	05/24/2021 1209
Hexachlorocyclopentadiena	670	570		í	85	18-121	05/24/2021 1209

LOG ~ Limb of Quartileton

 $ND = N\omega$ calculed at or above the DL

N = Recovery is out of oftena

DL ~ Detection Lmit

 $J\equiv Estimated result < LOO and <math display="inline">\geq DU$

 $\rho = 1 h g$ RPD between Iwo GC columns exceeds 40%

+ = RPD is out of critera

^{* –} RSD is out of organia

Semivolatile Organic Compounds by GC/MS - LC\$

Sample ID: WQ91939-002

Batch: 91939 Analytical Method: 8270E Matrix: Solid Prep Method: 3546

Prep Date: 05/11/2021 2048

Parameter	Spike Amount (ug/kg)	Result (ug/kg) Q	DII	% Rec	%Rec Limit	Analysis D ato
Hexachloroethane	130	99	1	74	30-98	05/24/2021 1209
ludeno(1,2,3-c,d)pyrene	130	110	1	84	42 -123	05/24/2021 1209
Isaphorone	130	140	1	102	41-119	05/24/2021 1209
2-Methylлaphthalene	130	110	1	81	10-107	05/24/2021 1209
2-Mothylphenol	100	110	1	85	32-107	05/24/2021 1209
3+4-Methylphenol	130	110	1	8-1	39-108	05/24/2021 1209
Naphthalene	130	110	1	BD	10-112	05/24/2021 1209
2-Nitroaniline	130	110	1	80	45-123	05/24/2021 1209
3-Nitroaniilne	130	82	1	62	24-127	05/24/2021 1209
4-Nitroaniline	130	90	1	68	48-127	05/24/2021 1209
Nitrobenzene	130	97	1	73	33-114	05/24/2021 1209
2-Nitrophenol	130	100	1	77	35-108	05/24/2021 1209
t-Nitrophenol	270	180	1	60	18-154	06/24/2021 1209
N-Nitrosadl-n-propylemine	130	130	1	101	32-115	06/24/2021 1209
N-Nifrosodiphenylemine (Diphenylamine)	130	110	1	84	53-150	05/24/2021 1209
PentachforopheлоI	270	140	1	54	27-138	05/24/2021 1209
Phenanthreno	190	110	1	80	16-123	06/24/2021 1209
Phenol	130	120	1	87	36-108	08/24/2021 1209
Pyrene	130	87	1	66	34-121	06/24/2021 1209
2,4,5-Trichlorophenol	130	100	1	77	46-122	05/24/2021 1209
2,4.6-Trichlorophenoi	130	110	1	80	38-115	05/24/2021 1209
Surrogate	Q %Rec	Acceptance Limit				
2-Fluoroblphenyl	83	33-102				
2-Fluarophenol	80	35-115				
vitrabenzene-d5	83	22-109				
Phenol-d5	91	33-122				
Ferphenyl-d14	69	41-120				
2,4,6≺Tribromophenol	100	30-117				

LOC = Limit of Quantitation

ND = Not detected at or above top <math>DI,

N = Resovery is out of orderla

Du = Bosseyan Umb

J = Estimated result < LOQ and \geq DL,

Pin The RPD between two 80 columns exceeds 40%

* = RSD is out of ofter a

= = RPD is out of ordera

Semivolatile Organic Compounds by GC/MS - MS

Sample ID: WE10034-001MS

Batch: 91939

Matrix: Solid Prep Mothod: 3546

Prep Dato: 05/11/2021 2048

Analytical Mothod: 8270⊟

Parameter	Sample Amount (ug/kg)	Spike Amount (ug/kg)	Result (ug/kg)	Q	Dil	% Rec	%Rec Limit	Analysis Date
Acenaphthone	ND .	150	140		20	90	12-[11	05/25/2021 1567
Acenaphthy(end	ND	150	120		20	82	44-122	05/25/2021 1567
Acelophenoro	ND	150	120		20	77	30-130	05/25/2021 1557
An(hracene	50	150	180		20	70	16-122	05/25/2021 1557
Atrezine	ND	150	100		20	66	30-130	05/25/2021 1557
Benzeldehyde	ND	150	223	N	20	148	10-110	05/25/2021 1557
Benzo(a)anthrecene	180	15C	220	N	20	28	40-121	05/25/2021 1557
Benzo(a)pyrone	160	150	230		20	49	38-114	05/25/2021 1667
Benzo(p)fluoranthene	180	150	230	N	20	33	38-123	05/25/2021 1667
Benzo(g,h,l)porylene	73	150	190		20	76	43-120	05/25/2021 1567
Benzo(k)fluoranthene	81	150	180		20	66	40-126	05/25/2021 1557
1,1'-Biphenyl	ND	150	140		20	90	30-100	05/25/2021 1557
4-Bromophenyl phenyl ether	ND	150	120		20	83	30-138	06/25/2021 1657
Butyl benzyl phthalate	ND	150	190		20	128	30-130	06/25/2021 1567
Caprolactam	ND	150	81		20	54	30-130	06/25/2021 1567
Carbazole	ND	150	150		20	100	30-130	05/25/202 1 1557
bis (2-Chioro-1-methylethyl) ether	ND	150	130		20	87	30-130	05/25/2021 1557
4-Chloro-3-mothyl phenol	ND	150	120		20	78	30-130	05/25/2021 1567
4-Chloroanllino	ND	150	ND	Ν	20	0.00	17-106	05/25/2021 1567
bls(2-Ghloroethoxy)methane	ND	150	120		20	81	30-130	05/25/2021 1557
bls(2-Ghloroethyl)ether	ND	150	140		20	93	30-130	05/25/2021 1657
2-Chloronaphthalene	ND	150	130		20	84	30-130	05/25/2021 1667
2-Chlomphenol	ND	150	83		20	55	30-130	05/25/2021 1557
4-Chlorophenyl phenyl ether	ND	150	130		20	88	30-130	05/25/2021 1667
Chrysene	140	150	210		20	47	41-124	05/25/2021 1657
Dibenzo(a,h)anthracene	ND	150	140		20	91	38-125	05/25/2021 1657
Dibenzofuran	ND	150	160		20	105	30-130	DS/25/20 2 1 1667
3,3'-Dichlorobenzidine	ND	160	ND	Ν	20	0.00	10-119	05/25/2021 1557
2,4-Dicfilorophenol	ND	150	99		20	66	30-130	05/25/2021 1567
Diothylofithalate	ND	150	120		20	82	30-130	0 5 /25/2021 1567
Dimethyl phthalate	ND	150	130		20	85	30-130	05/25/ 2021 1557:
2,4-Dimethylphenol	ND	150	130		20	86	30-130	05/25/2021 1557
DI-n-buty' phthalato	ND	150	140		20	91	30-130	05/25/2021 1557
4,6-Dinitro-2-methylphenol	ND	150	320	N	20	210	30-130	05/25/2021 1557
2,4-Dinitrophenol	ND	300	610	Ν	20	203	30-130	05/25/2021 1557
2,4-Dintratoluene	ND	150	ND	N	20	0.00	30-130	05/25/2021 1557
2,8-Dinitratoluene	ND	150	90		20	80	30-130	05/25/2021 1557
Di-n-octylohthalate	ND	150	900	N	20	199	30-130	05/25/2021 1557
bis(2-Ethylhexyl)phthafato	MD	150	280	N	20	184	30-130	05/25/2021 1557
Flucranthene	330	150	340	N	20	4.7	28-133	05/26/2021 1657
Flucrene	ND	150	130		20	84	19-108	05/26/2021 1657
Hexachlorobenzene	ND	150	120		20	81	30-130	05/26/2021 1557
Hexachlorobuladiana	ND	150	130		20	84	30-130	05/25/2021 1557
Hoxachlorocyc.ppentadlene	CN	750	320		20	43	30-130	05/25/2021 1567

LOG = Limit of Quentitation

ND = Natidetectad at or ebove the DL

DL - Detaction Limit

 $J \approx Gastimaled result < 10 Q and <math display="inline">\geq D I$.

 ρ = 1% RPD between two GC columns exceeds 40%

 $^{\bullet}$ = R8D is out of collecte

+ - RPD is out of criteria

Pada Analytical Solvicos, I.-.2 (formarly Sheety Environmental Services, Inc.)

¹⁰⁶ Vantage Point Orlvo - West Columbia, SC 29172 (803) 791-9700 - Fax (803) 791-9111 - www.pscalebs.com

Semivolatile Organic Compounds by GC/MS - MS

Sample ID: WE10034-001MS

Batch: 91939

Analytical Method: 8270E

Matrix: Solid Prep Method: 3546

Prep Date: 05/11/2021 2048

	Samp							
Parameter	Amot (ug/l				Dil	% Rec	%Rec Limit	Analysis Date
Hexachloroethane	ND	150	130		20	86	30-130	05/25/2021 1557
Indeno(1.2,3-c,d)pyrene	60	150	160		20	68	42-123	05/25/2021 1557
Isophorone	ND	150	120		20	77	30-130	06/25/2021 1557
2-Methylnaphthglene	100	150	240		20	92	10-107	05/25/2021 1557
2-Mathylphenol	ND	150	120		20	77	30-130	05/25/2021 1557
3-4-Methylphenol	ND	160	ND	N	20	0.00	30-130	05/25/2021 1557
Naphthelene	75	160	210		20	93	10-112	05/25/2021 1567
2-Nitroanijin e	ND	150	NL	N	20	0.00	30-130	05/25/2021 1557
3-Nt/ceniline	ND	150	ND	N	20	0.00	30-130	05/25/2021 1557
4-Nitroaniline	ND	150	210	N	20	142	30-130	05/25/2021 1557
Nitrobenzene	ND	15G	94		20	62	30-130	05/26/2021 1557
2-Nitrophenol	ND	150	ND	N	20	0.00	30-130	05/25/2021 1557
4-Nitrophenol	ND	300	ND	N	20	0.00	30-130	05/25/2021 1557
N-NitrosodI-n-propylamine	NĎ	150	100		20	68	30-130	05/26/2021 1557
N-Nitrosod phenylamine (Diphenylamine)	ND	150	110		20	76	30-130	05/25/2021 1557
Pentachlorophenol	ND	300	ND	N	20	0.00	30-130	05/25/2021 1657
Phenanthrene	190	150	260		20	42	16-123	05/25/2021 1657
Phenol	ND	150	95		20	63	30-130	05/25/2021 1557
Pyran e	210	150	260		20	36	34-121	05/25/2021 1557
2,4,5-Trichlorophenol	ND	150	ND	N	20	0.00	30-130	05/25/2021 1657
2,4,6-Trichiorophenol	ND	150	80		20	53	30-130	05/25/2021 1557
Surrogate	Q	% Rec	Acceptance Limit					
2-Fluerobiphenyl		77	33-102					
2-Fluorophenol		52	36-116					
Nitrobenzene-d5		69	22-109					
Phehol-d5		57	33-122					
Terphenys-d14		85	41-120					
2,4,6-Tribromophenol		42	30-117					

LCQ = Limit of Quapilistian

DL = Dopos(con Limit)

NO = Not delected at or above the DL

Nin Recovery is out of ofterla

 $|\vec{a}|$ = Estimated result < LOQ and \geq 01.

P = The RPD between two SC columns expects 40%

* = RSB is out of oftede

+ = RPD is out of criteria

Semivolatile Organic Compounds by GC/MS - MSD

Sample ID: WE10034-001MD

Batch: 91939

Matrix: Solid Prep Method: 3548

Prop Date: 05/11/2021 2048

Analytical Method: 8270E

Parameter	Sample Amount (ug/kg)	Spike Amount (ug/kg)	Result (ug/kg)	Q_	Dil	% Rec	% RPD	%Rec Limit	% RPD Limit	Analysis Date
Aconaphthene	ND ND	150	130		20	86	6.3	12-111	30	05/25/2021 1622
Aconaphthylene	ND	150	120		20	77	6.7	44-122	30	05/25/2021 1622
Agetophenone	ND	150	120		20	79	2.8	30-130	40	05/25/2021 1622
Anthracene	60	150	130		20	66	15	16-122	30	05/25/2021 1622
Atrazine	ND	150	96		20	63	7.2	30-130	40	05/25/2021 1622
Benzeldchyde	ND	150	210	N	20	142	4.0	10-110	40	05/25/2021 1622
Benzo(a)anthracene	180	15D	170	N	20	-4.9	26	40-121	30	05/25/2021 1622
Bonzo(a)pyrene	160	150	190	N	20	19	21	38-114	30	05/25/2021 1622
Benzo(b)fluoranthene	180	160	170	N	20	-1.7	26	38-123	30	05/25/2021 1622
Benzo(g,h,i)perylene	73	150	140		20	47	26	43-120	30	05/25/2021 1622
Bonzo(k)fluoranthene	81	150	140		20	42	23	40-126	30	05/25/2021 1622
1,1*-Biphenyl	ND	150	130		20	86	6.3	30-130	40	05/25/2021 1622
4-Bromophenyl phenyl ether	ND	160	130		20	84	1.5	30-130	40	05/25/2021 1622
Butyl bonzyl phtha ate	ND	180	180		20	121	5.8	30-130	40	05/25/2021 1622
Caprolactam	ND	150	98		20	66	19	30-130	40	05/25/2021 1622
Carbazole	ND	150	140		20	95	5.3	30-130	40	06/25/2021 1622
bis (2-Chloro-1-methylethyl) ethor	ND	150	140		20	96	9.8	30-130	40	06/2 5 /2021 1 622
4-Chloro-3-methyl pherod	ND	150	120		20	79	0.85	30-130	40	05/25/2021 1622
4-Chioroaniline	ND	150	CN	N	20	0.00	0.00	17-196	40	05/25/2021 1622
bls(2-Chicroethoxy)methane	ND	150	120		20	81	0.56	30-130	40	05/25/2021 1622
bls(2-Chloroethyl)ether	ND	160	140		20	91	2.0	30-130	40	05/25/2021 1622
2-Chloronaphthalene	ND	150	120		20	78	6,8	30-130	40	05/25/2021 1622
2-Ghlorophenol	ND	150	86		20	57	3.1	30-130	40	05/25/2021 1622
4-Chlorophenyl phenyl ethor	ND	150	130		20	87	1.3	30-130	40	05/26/2021 1622
Chrysene	140	150	150	N_i +	20	6.9	34	41-124	30	05/25/2021 1622
Dibenzo(a,h)enthracene	ND	150	120	-	20	38	14	38-125	30	05/25/2021 1622
Dibenzofuren	NO	150	150		20	97	8.2	30-130	40	05/26/2021 1622
3,3'-Diphlorobenzicine	ND	150	ND	N	20	0.00	0.00	10-119	40	05/25/2021 1622
2,4-Dichlorophenal	NP	150	94		20	63	4.3	30-130	40	05/25/2021 1622
Diethylphthelate	ND	150	130		20	83	1.5	30-130	40	05/25/2021 1622
Dimethyl phthalate	ND	150	120		20	81	3.8	30-130	40	05/25/2021 1622
2,4-Dimethylphenol	ND	150	83	+	20	55	44	30-130	40	05/25/2021 1622
Di-n-butyl phtharate	ND	150	140		20	96	5.1	30-130	40	05/25/2021 1622
4,6-Dînitro-2-methylphenol	ND	150	320	N	20	210	0.021	30-130	40	05/25/2021 1822
2,4-Dinifrophenol	ND	300	600	N	20	201	1.4	30-130	40	05/25/2021 1622
2,4-Dinitrotoluene	ND	150	ND	N	20	0.00	0.00	30-130	40	05/25/2021 1622
2,6-Dinitrotoluene	ND	150	88		20	57	4.4	30-130	40	05/25/2021 1622
Di-n-getylphthalate (ND	150	300	N	20	202	1.2	30-130	40	05/25/2021 1622
DI-H-Octalbustrates	ND	150	280	N	20	184	0.33	30-130		05/25/2021 1622
bis(2-€thylhexyl)phänstate Fluoranthone	330	150	230		20	-66	37	26-133		05/25/2021 1622
Fluorena	ND	150	120	,	20	78	7.4	19-108		05/25/2021 1622
Hexachlorobenzone	ND	150	120		20	79	2.8	30-130		05/25/2021 1622
Hexachlorobutadiono	CN	150	120		20	82	2.8	30-130		05/25/2021 1622
	ND	750	300		20	40	6.6	30-130		05/25/2021 1622
Hexachlorocyclopentadleno	Mix	100	500		20	40	5.0	00 100	-14	

 $LOQ = \coprod mill of Quantillation$

ND ≃ Not detected all or above the DL

N = Recovery is out of criteria

BL = Detection fürnit

J ~ Estimated result < 1,000 and ≥ DL

P=The RPD between two SC to umns exceeds 40%

া – RPD is out of milpris

^{* =} R&D is out of criter's

Semivolatile Organic Compounds by GC/MS - MSD

Sample ID: WE10034-001MD

Batch: 91939 Analytical Method: 8270E

Matrix: Solid Prep Method: 3546

Prep Date: 06/11/2021 2048

Parameter	Samp Amo (ug/	unt	Splk Amo (ug/	unt Rosult	Q	Dil	% Rec	% RPD	%Rec Limit	% RPD Limit	Analysis Oate
Hexachlorgethane	ND		150	120		20	80	7.9	30-130	40	05/25/2021 1622
Indono(1,2,3-c,d)pyrene	60		150	130		20	48	21	42-123	30	05/25/2021 1622
errorohaal	ND.		150	120		20	79	2.5	30-130	40	05/25/2021 1622
2-Methylnaphthalene	100		150	230		20	82	B.4	10-107	30	05/25/2021 1622
2-Methylphanal	ND		150	91		20	₿1	24	30-130	40	05/25/2021 1622
3+4-Methylphanol	ND		150	ND	N	20	0.00	0.00	30-130	40	05/25/2021 1622
Naphthalene	75		150	200		20	84	Б.9	10-112	30	05/25/2021 1622
2-Nitroanillno	ND		150	ND	N	20	0.00	0.00	30-130	40	05/25/2021 1622
3-NitroanIllne	ND		150	ND	N	20	0.00	0.00	30-130	40	05/25/2021 1822
4-Nitroani'ine	ND		150	200	N	20	131	7.6	30-130	40	06/25/2021 1622
Nitrobenzene	ND		150	110		20	78	20	30-130	40	06/25/2021 1622
2-Nitraphenol	ŊD		150	ND	N	20	0.00	0.00	30-130	40	05/25/2021 1622
4-Nitrophenol	ND		300	CN	N	20	0.00	0.00	30-130	40	05/25/2021 1622
N-NIbosodi-n-propylamino	ND		150	190		20	90	27	30-130	40	05/25/2021 1622
N-Nitrosodiphenylamina (Diphenylamine)	ND		150	120		20	77	1.6	39-130	40	05/25/2021 1622
Pentachlorophenol	ND		300	ND	N	20	0.00	0.00	30-130	40	05/25/2021 1622
Phenanthrene	190		150	180	N,+	20	-7.3	34	16-123	30	05/25/2021 1622
Phenol	ND		450	100		20	67	5.3	30-130	40	05/25/2021 1822
Pyrene	210		150	190	N,÷	20	-15	34	34-121	30	05/25/2021 1622
2,4,5-Trichlarophenal	ND		150	ND	N	20	0.00	0.00	30-130	40	05/25/2021 1622
2,4,6-Trichlarophenal	ND		150	76		20	51	4.9	30-130	40	05/25/2021 1622
Surrogate	Q	% Rec		Acceptance Limit							
2-Fluorablphenyl		79		33-102					•		
2-Fluorophenol		67		35-115							
Nitrobenzena-d5		80		22-109							
Pnenol-d5		84		33-122							
Ferphonyl-d14		78		41-120							
2,4,6-Tribremophenol		45		30-117							

LOQ = Limit of Quantilation OL - Datection Limit

ND ~ Not detected at or above the DL.

In Calimated results LOQ and $\gtrsim DL$

N = Recovery signal of crite ta

P = The RPD between two GC palumns expects 40%

* = RSD la out of criteria

= = RPD is out of criterja

Semivolatile Organic Compounds by GC/MS - MB

Sample ID: WQ92194-001 **Batch:** 92194

Analytical Method: 8270E

Matrix: Aqueous Prep Method: 35200

Prep Date: 05/43/2021 1422

Parametor	Result	Q	וום	LOQ	DL	Units	Analysis Date
Acenaphihene	ND .		1	0.16	0.040	ug/L	05/16/2021 1405
Acenachthylene	ND		1	0.16	0.046	ug/L	05/18/2021 1405
Acetophonone	ND		1	0.90	0.23	ug/L	05/16/2021 1405
Anthracene	ND		1	0.16	0.040	ug/L	05/16/2021 1405
Atrazine	ND		1	0.80	0.20	ug/L	05/16/2021 1405
Benzaldehydo	ND		1	4.0	0.27	ug/l.	05/16/2021 1405
Benzo(a)anthracene	ND		1	0.16	0.040	ug/L	05/16/2021 1405
Benzo(a)pyrene	ND		1	0.16	0.040	ug/L	05/16/2021 1405
Benzo(b)fluoranthene	ND			0.16	0.040	ug/L	05/16/2021 1405
Benzo(g,h,i)perylene	ND		1	0.18	0.040	ug/L	05/16/2021 1405
Benzo(k)fluoranthene	ND		1	0.18	0.040	ug/L	06/16/2021 1405
1,1'-Blphenyl	ND		1	0.80	0.21	ug/L	05/16/2021 1405
4-Bramaphenyl phenyl ether	ND		1	0.80	0.15	ug/L	05/16/2021 1405
Butyl benzyl phthalate	ND		1	4.0	0.21	ug/L	05/16/2021 1405
Caprolactam	ND		1	4.0	0.71	ug/L	05/16/2021 1405
Carbazole	ND		1	0.80	0.040	ug/L	05/16/2021 1405
bis (2-Chloro-1-methylethyl) other	ND ·		1	0.80	0.17	ug/L	05/16/2021 1405
4-Chlaro-3-methyl phenal	ND		1	0.80	10.26	$ug/_{-}$	05/18/2021 1405
4-Chloroaniline	ND		1	0.80	0.13	ag/L	05/16/2021 1405
bis(2-Chloroethoxy)methane	ND		1	0.80	0.060	ug/L	05/16/2021 1405
bis(2-Chlorcethyl)ether	ND		1	0.80	0.16	ug/L	05/16/2021 14 0 5
2-Chloronaphthalene	ND		1	0.80	0.15	ug/L	05/16/2021 1405
2-Chloropheno.	ND		1	0.80	0.15	ug/L	05/16/2021 1405
4-Chlorophenyl phenyl athor	ND		1	0.80	0.16	ug/L	06/16/2021 1405
Chrysene	ND			0.16	0.040	ug/L	05/16/2021 1405
Dibenzo(a.h)anthrecene	ND		1	0.16	0.040	ug/L	05/16/2021 1406
Dibenzofuran	ND		1	0.80	0.16	ug/L	05/16/2021 1405
3.3'-Dichtorobenzidine	ND		1	4.0	0.81	ug/L	05/16/2021 1405
2,4-Dichlerophenol	ND		1	08.0	0.19	ug/L	05/16/2021 1405
Diothylphthalate	ND		1	4.0	0.19	ug/L	05/16/2021 1405
Olmethyl phthalate	ND		1	4.0	0.18	ug/L	05/16/2021 1405
2,4-Dimethylphenol	ND		1	0.80	0.15	ug/L	05/16/2021 1405
Di-n-butyl phthalate	ND		1	4.0	0.42	ug/L	05/16/2021 1405
4,6-Dinitro-2-methylphenol	ND		1	4,0	0.89	ug/L	05/16/2021 1405
2,4-Dinitrophenoi	ND		1 .	4.0	1.3	ug/L	05/16/2021 1405
2,4-Dinitrotaluono	ND		1	1.6	0.36	ug/L	05/16/2021 1405
2,6-Digitrata uena	CN		1	1.6	0.34	ug/l.	05/16/2021 1405
Di-n-octylphthalate	ND		1	4.0	0.48	ug/L	05/18/2021 1405
bis(2-Ethylhexyl)phthalate	0.88	J	1	4.0	0.38	ug/L	05/16/2021 1405
Fluoranthono	ND	-	1	0.16	0.040	∪g/L	05/16/2021 1405
Fluorene	ND		1	0.16	0.040	ug/l.	05/16/2021 1495
Hexachlorobenzene	ND		1	0.80	G.15	ug/L	05/16/2021 1405
Hexachlorobutadiena	ND		1	0.80	0.17	ug/L	05/16/2021 1405
Hexachtoropyclopentadieno	ND		1	4.0	1.1	ug/L	05/18/2021 1405

LOG - Limit of Quantilation

ND = Not detected at or above this DL

N = Repayony is out of allerta

DL - Cetection I, mit

 $J = T_{in} final edite sult < LOQ and <math>\geq DL$

P=The RPD between two GC columns exceeds 40%.

* = RSD is suboficitions

− ≂ RPD is out of or tens.

Semivolatile Organic Compounds by GC/MS - MB

Sample ID: yyQ92194-001

Batch: 92194 Analytical Method: 8270E Matrix: Aqueous Prep Method: 35200

Prep Date: 05/13/2021 1422

Paramotor	Result	Q Dil	LOQ	<u>bL</u>	Units	Analysis Date
Rexachloroethane	ND	1	0.80	0.17	υg/L	06/16/2021 1405
Indeno(1,2,3-c,d)pyrene	ND	1	0.16	0.040	υg/L	06/16/2021 1405
Isophorone	ND	5	0.80	0.22	ug/L	06/16/2021 1405
2-Malayinaphthalene	ND	1	0.16	0.640	ug/L	06/16/2021 1405
2-Methylphenoi	ND	1	0.80	0.21	ug/L	06/16/2021 1405
3+4-Methylphonol	ND	1	1.8	0.46	ug/L	05/16/2021 1405
Naphthalone	ND	1	0.18	0.040	ug/L	05/16/2021 1405
2-Nitroaniline	ND	1	1. 6	0.66	ug/L	06/16/2021 1405
3-Nitreantine	ND	1	1.6	0.15	ug/L	05/16/2021 1405
4-NitroanIIIne	ND	1	1.6	1.3	ug/L	05/16/2021 1405
Nitrobonzene	ND	1	0.80	0.17	ug/L	05/16/2021 1405
2-Nitraphen o l	ND	1	1.6	0.44	ug/L	05/18/2021 1405
4-Nitrophenol	ND	1	4.0	2.1	ug/L	05/18/2021 1405
N-Nitrosodi-n-propylamine	ND	1	0.80	0.28	ug/L	05/18/2021 1405
N-Nitrosodiphenylamine (Diphony	lamina) ND	1	0.80	0.50	ug/L	05/16/2021 1405
Pentachlorophenol	ND	1	4.0	1.3	ug/L	05/18/2021 1405
Phonanthrene	ND	1	0.16	0.040	ug/L	05/18/2021 1405
Phenol	ND	1	0.80	0.19	ug/L	05/16/2021 1405
Pyrene	ND	1	0.16	0.040	ug/L	05/16/2021 1405
2,4,5-Trichlorophenol	ND	1	0.80	0 19	ug/L	05/16/2021 1405
2,4,8-Trichlarophenol	ND	1	0.80	0.22	ug/L	05/16/2021 1405
Surrogate	Q % Rec	Acceptance Limit				
2-Fluoroblphenyl	82	37-129	<u> </u>			-
2-Fluorophenol	45	24-127				
Nitrobenzene-d5	79	38-127				
Phenol-d5	62	28-128				
Terphenyl-d14	94	10-148				
2,4,6-Tribromophenal	69	35-144				

LOQ = Umit of Quantilet on

ND = Not delected at an above the DL

N = Recovery is but of critoria

DL = Detection Limit

J = Est /helted resulf < LOC and $\succeq DI$.

Pin The RPD between two GC columns exceeds 40%

fin RSD is out of priterla

+ = RPD is out of criteria

Semivolatile Organic Compounds by GC/MS - LCS

Sample ID: WQ92194-002

Batch: 92194

Matrix: Aqueous Prep Mothod: 35200

Prep Date: 05/13/2021 1422

Analytical Method: 82/70E

Parameter Acenaphthene Acenaphthylene Acetophenone Anthracene Atrazine Benzaldehyde Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene 1,1'-Biphenyl 4-Bromophenýl phenyl ether Butyš benzyl phthalate Caprolactam Carbazole	8pike Amount (ug/L) 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.	Result (ug/L) 7.8 7.9 9.7 8.3 7.3 3.9 7.9 9.3 8.3 8.0 8.0 8.0 7.5 9.9	Q	DII 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	% Rec 98 99 122 104 91 49 99 116 104 100	%Rec Limit 30-122 30-130 52-125 30-123 25-121 20-115 40-125 40-128 30-130 30-130 30-130 42-120	Analysis Date 05/16/2021 1430 06/16/2021 1430 05/16/2021 1430 05/16/2021 1430 05/16/2021 1430 05/16/2021 1430 05/16/2021 1430 05/16/2021 1430 05/16/2021 1430 05/16/2021 1430 05/16/2021 1430 05/16/2021 1430 05/16/2021 1430
Acenaphthene Acenaphthylene Acetophenone Anthracene Atrazine Benzaldehyde Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene 1,1'-Biphenyl 4-Bromophenyl phenyl ether Butyl benzyl phthalate Caprolactam	8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0	7.8 7.9 9.7 8.3 7.3 3.9 7.9 9.3 8.3 8.0 8.0 8.0 7.5	Q	1 1 1 1 1 1 1 1 1 1	98 99 122 104 91 49 99 116 104 100	30-122 30-130 52-125 30-123 25-421 20-115 40-125 40-128 30-130 30-130 30-130	05/16/2021 1430 05/16/2021 1430
Acenaphthylene Acetophenone Anthracene Atrazine Benzaldehyde Benzo(a)anthracene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene 1,1'-Biphenyl 4-Bromophenyl phenyl ether Butyl benzyl phthalate Caprolactam	8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0	7.9 9.7 8.3 7.3 3.9 7.9 9.3 8.3 8.0 8.0 7.6 9.9		1 1 1 1 1 1 1 1 1	99 122 104 91 49 99 116 104 100	30-130 52-125 30-123 26-121 20-115 40-125 40-128 30-130 30-130 30-130	06/16/2021 1430 06/16/2021 1430 05/16/2021 1430 05/16/2021 1430 05/16/2021 1430 05/16/2021 1430 05/16/2021 1430 05/16/2021 1430 05/16/2021 1430 05/16/2021 1430
Acetophenone Anthracene Atrazine Benzaldehyde Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene 1,1'-Biphenyl 4-Bromophenyl phenyl ether Butyl benzyl phthalate Caprolactam	8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0	9.7 8.3 7.3 3.9 7.9 9.3 8.3 8.0 8.0 9.0 7.6		1 1 1 1 1 1 1 1	122 104 91 49 99 116 104 100	52-125 30-123 25-121 20-115 40-125 40-128 30-130 30-130 30-130	05/16/2021 1430 05/16/2021 1430 05/16/2021 1430 05/16/2021 1430 05/16/2021 1430 05/16/2021 1430 05/16/2021 1430 05/16/2021 1430 05/16/2021 1430
Anthracene Atrazine Benzaldehydo Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene 1,1'-Biphenyl 4-Bromophenyl phenyl ether Butyl benzyl phthalate Caprolactam	8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0	8.3 7.3 3.9 7.9 9.3 8.3 8.0 8.0 8.0 7.5		1 1 1 1 1 1 1	104 91 49 99 116 104 100	30-123 25-121 20-115 40-125 40-128 30-130 30-130 30-130	05/16/2021 1430 05/16/2021 1430 05/16/2021 1430 05/16/2021 1430 05/16/2021 1430 05/16/2021 1430 05/16/2021 1430 05/16/2021 1430
Atrazine Benzaldehydo Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene 1,1'-Biphenyl 4-Bromophenyl phenyl ether Butyf benzyl phthalate Caprolactam	8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0	7.3 3.9 7.9 9.3 8.3 8.0 8.0 8.0 7.5		1 1 1 1 1 1	91 49 99 118 104 100 100	26-121 20-115 40-125 40-128 30-130 30-130 30-130	05/16/2021 1430 05/16/2021 1430 05/16/2021 1430 05/16/2021 1430 05/16/2021 1430 05/16/2021 1430 05/16/2021 1430
Benzaldeliydo Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene 1,1'-Biphenyl 4-Bromophenyl phenyl ether Butyl benzyl phthalate Caprolactam	8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0	3.9 7.9 9.3 8.3 8.0 8.0 8.0 7.5		1 1 1 1 1	49 99 116 104 100 100	20-115 40-125 40-128 30-130 30-130 30-130	05/16/2021 1430 05/16/2021 1430 05/16/2021 1430 05/16/2021 1430 05/16/2021 1430 05/16/2021 1430
Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene 1,1'-Biphenyl 4-Bromophenyl phenyl ether Butyl benzyl phthalate Caprolactam	8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0	7.9 9,3 8.3 8.0 8.0 8.0 7.5 9,9		1 1 1 1	99 116 104 100 100	40-125 40-128 30-130 30-130 30-130	05/16/2021 1430 05/16/2021 1430 05/16/2021 1430 05/16/2021 1430 05/16/2021 1430
Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene 1,1'-Biphenyl 4-Bromophenýl phenyl ether Butyl benzyl phthalate Caprolactam	8.0 8.0 8.0 8.0 8.0 8.0 8.0	9,3 8.3 8.0 8.0 8.0 7.6 9,9		1 1 1	116 104 100 100	40-128 30-130 30-130 30-130	05/16/2021 1490 05/16/2021 1490 05/16/2021 1490 05/16/2021 1490
Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene 1,1'-Biphenyl 4-Bromophenýl phenyl ether Butył benzyl phthalate Caprolactam	8.0 8.0 8.0 8.0 8.0 8.0 8.0	8.3 8.0 8.0 8.0 7.5 9,9		1 1 1	104 100 100	30-130 30-130 30-130	05/16/2021 1430 05/16/2021 1430 05/16/2021 1430
Benzo(g,h,i)perylene Benzo(k)fluoranthene 1,1'-Biphenyl 4-Bromophenyl phenyl ether Butyl benzyl phthalate Caprolactam	8.0 8.0 8.0 8.0 8.0 8.0	8.0 8.0 8.0 7.5 9,9		1	100 100	30-130 30-130	05/16/2021 1430 05/16/2021 1430
Benzo(k)fluoranthene 1,1'-Biphenyl 4-Bromophenyl phenyl ether Butyl benzyl phthalate Caprolactam	8.0 8.0 8.0 8.0 8.0	8.0 8.0 7.5 9.9		1	100	30-130	05/16/2021 1430
Benzo(k)fluoranthene 1,1'-Biphenyl 4-Bromophenyl phenyl ether Butyl benzyl phthalate Caprolactam	8.0 8.0 8.0 8.0	8.0 7.6 9,9					
1,1'-Biphenyl 4-Bromophenyl phenyl ether Butyl benzyl phthalate Caprolactam	0.8 0.8 0.8	7.5 9,0		1	99	42-120	46/46/2024 4 43 0
4-Bromophenýl phenyl ether Buty: benzyl phthalate Caprolactam	0.8 0.8	0.9					50/10/2021 1400
Butyf benzyl phthalate Caprolactam	0.8 0.8			1	93	30-124	05/16/2021 1430
Caprolactam	0.8			1	113	54-135	05/16/2021 1430
•		8.1		1	101	44-152	05/16/2021 1430
		8.4	N	1	105	45-101	05/16/2021 1430
bis (2-Chloro-1-methylethyl) ethor	8.0	9.0		1	113	42-124	05/16/2021 1430
4-Chloro-3-methyl phenol	0.8	9.3		1	116	30-123	06/16/2021 1430
4-Chloroaniline	8.0	5.0		1	83	12-157	05/16/2021 1430
bls(2-Chloroethaxy)methane	8.0	8.2		1	103	44-127	06/16/2021 1430
bls(2-Chloroethyl)ether	8.0	8.9		1	112	46-120	05/16/2021 1430
2-Chloronaphthalene	8.0	8.0		1	130	46-100	05/16/2021 1430
•	8.0	7.6		1	95	50-117	05/16/2021 1430
2-Chlorophenol 4-Chlorophenyl phenyl ether	B. 0	8.7		1	100	30-121	05/16/2021 1430
	8.0	8.7		1	108	30-130	05/16/2021 1430
Chrysene	B.D	8.1		1	102	30-130	05/16/2021 1430
Dibenzo(a,h)enthracene Dibenzofuren	8.0	8.1		1	102	3C-118	05/16/2021 1430
	8.0	5.0		1	62	10-126	05/16/2021 1430
3,3'-Dichlorobenzidine		7.9		1	99	30-121	05/16/2021 1430
2,4-Dichlorophenol	8.0	7.3 9.3		1	17 17	40-125	05/16/2021 1430
Diethylphthalate	8.0	9.5 8.7		1	109	40-127	05/16/2021 1430
Dimethyl phthalate	8.0				.09 97	20-125	05/16/2021 1430
2,4-Dimethylphenol	8.0	7,7		1	107	40-127	05/16/2021 1430
DI-n-butyl phthalate	8.0	8,6		1			05/16/2021 1430
4,8-Dinitra-2-methylphenol	8.0	7,2		1	90	56-128	05/16/2021 1430
2,4-Dinitrophenol	16	12		1	74	11-126	
2,4-Dinitretoluene	8.0	9.8		1	123	59-127	05/16/2021 1430
2,6-Dinitretoluene	8.0	9.0		1	112	59-126	Q5/18/2021 1430
Di-n-octylphthalato	8.0	7.5		1	94	50-136	05/18/2021 1430
bis(2-Ethylhexyl)phthalate	8.0	32	N	1	401	56-128	05/16/2021 1430
Ruoranthene	8.0	7.6		1	25	40-128	05/16/2021 1430
Fluorene	8.0	8.0		1	100	30-124	05/16/2021 1430
Hexachlorobenzone	8.0	8.8		ŧ	83	30-125	05/16/2021 1430
Hexachlorobutadione	8.0	6.6		<u> </u>	83	24-110	05/16/2021 1430
Hexachlorocyclopentadione	40	26		1	6 6	16- 98	05/16/2021 1430

LOQ = Limit of Quantitation

ND = Not delected at or above the DL

N = Recoyoty is out of criteria

[3], = Datection Limit

und <u>d</u> pria QQL > tlusen belamilisD ≂ I.

 $P=The\ RPD\ typtoconic two:\ GC\ columns\ exceeds\ 40\%$

+ ~ RPD is out at criteria.

^{* =} R&D is but of critoria

Semivolatile Organic Compounds by GC/MS - LCS

Sample ID: WQ92194-002 **Batch:** 92194

Analytical Method: 8270E

Matrix: Aqueous Prop Method: 3520C

Prep Date: 05/13/2021 1422

Parameter	Spike Amou (ug/L	nt	Result (ug/L)	Q	<u> D</u> il	% Rec	%Roc Limit	Analysis Date
Hexachloroethano	8.0		6.5		1	81	31-110	05/18/2021 1430
Indeno(1,2,3-c,d)pyrene	8.0		7.7		1	96	30-130	05/16/2021 1430
Isaphorone	8.0		10	N	1	129	57-123	05/16/2021 1430
2-Methylnaphthalene	8.0		8.3		1	104	40-132	05/16/2021 1430
2-Mathylphenol	8.0		8.9		1	87	66-119	05/16/2021 1430
3+4-Methylphenol	8.0		7.8		1	98	53-119	05/16/2021 1430
Naphthalene	8.0		7.3		1	92	30-136	05/16/2021 1430
2-Nitroeniline	0.8		7.0		1	88	60-124	05/16/2021 1430
3-Nitroaniline	8.0		5.4		1	68	43-123	05/16/2021 1430
4-Nitroaniline	8.0		7.1		1	89	30-135	05/16/2021 1430
Nitrobenzene	8.0		8.8		1	110	51-122	05/16/2021 1430
2-Nitrophenal	8.0		7.1		1	89	51-118	05/16/2021 1430
4-Nitrophenal	16		18		1	115	53-130	05/16/2021 1430
N-NitrosodI-n-propylemine	8.0		11	N	1	139	54-127	05/16/2021 1430
N-Nitrosod/phenylarnine (Diphenylamine)	0.8 (7.9		1	99	30-123	05/16/2021 1430
Pentachlorophenol	16		14		1	87	42-131	05/16/2021 1430
Phenanthrene	8.0		8.2		1	102	40-123	05/16/2021 1430
Phenal	8.0		7.4		1	93	49-117	05/16/2021 1430
Pyrene	8.0		8.3		1	104	40-126	05/16/2021 1430
2,4.5-Trichlarophenoi	8.0		7.8		1	97	30-123	05/18/2021 1430
2,4,6-Trichlorophenol	B.0		8.2		1	103	30-125	05/18/2021 1430
Surrogate	Q ·	% Rec	Accept Lim					
2-Fluorobiphenyl		90	37-	129		•	<u>-</u> :-	
2-Fluorephenol		75	24-1	127				
Nitrobenzer:e-d5		84	38-1	127				
Phenol-d5		87	28-1	128				
Terphenyl-d14		90	10-1	148				
2,4.6-Tribromophenol		64	35-1	144				

LOQ = Umit of Quantitetion

ND = Not detected at on above the DL

N = Recovery is out of oftena

Dia = Detection Limit

J = Estimated result < 10Q and > DL

P = The RPD between two GC polumns exceede 40%

f = RSD is out of criteria.

+ = RPD is out of criteria

Sample ID: WQ92120-001 Batch: 92120

Analytical Method: 6020B

Matrix: Aqueous Prep Method: 3006A

Prep Date: 05/13/2021 0401

Paramoter	Result	Q	DII	LOQ	DL	Units	Analysis Date
Dissolved Aluminum	ND		1	40	10	ug/L	05/13/2021 1831
Dissolved Antimony	ND		1	2.0	0.50	ug/L	05/13/2021 1831
Dissolved Arsenic	ND		1	2.0	1.3	υg/L	05/13/2021 1831
Dissolved Barium	ND		1	5.0	1.3	ug/L	05/13/2021 1831
Dissolved Cadmium	NO		1	G.50	0.13	ug/L	05/10/2021 1831
Dissolved Calcium	ND		1	400	100	ug/L	05/10/2021 1831
Dissolved Chromium	ND		1	5.0	1.3	ug/L	05/13/2021 1831
Dissolved Cobalt	ND		1	5.0	1.3	ug/L	06/13/2021 1831
Dissolved Copper	ND		1	5.C	1.3	ug/L	05/13/2021 1831
Dissolved Iron	ND		1	50	13	ug/L	06/13/2021 1831
Dissolved Lead	ND		1	1.0	0.25	ug/L	06/13/2021 1831
Dissolved Magnesium	ND		1	400	50	ug/L	05/13/2021 1831
Dissalvod Manganese	ND		1	5.0	1.3	ug/L	05/13/2021 1831
Dissalved Nicke.	ND		1	5.0	1.3	սց/լ.	05/13/2021 1831
Dissolved Potassium	ND:		1	400	100	ug/L	05/13/2021 1831
Dissolved Selenium	ND		1	5.0	1.3	ug/L	05/13/2021 1831
Dissalved Silver	ND		1	1.0	0.25	ug/L	05/13/2021 1831
Dissolved Sodium	ND		1	400	150	ug/L	05/13/2021 1831
Dissolved Thallium	ND		1	0.50	0.15	ug/L	05/13/2021 1831
Dissolved Vanacium	ND		1	5.0	2.5	ug/L	05/13/2021 1831
Dissolved Zinc	ND		1 ,	10	2.5	ug/L	05/13/2021 1891

LCQ = Limit of Quantilation

DL - Detection Limit

 $NC \approx Not depend on an above the <math display="inline">DU$

J = Estimated result < LOG and $\gtrsim D_{\odot}$

• = RSC is but of criteria

N = Recovery is soil of ortaria.

P • The RPD booycon live GC columns exceeds 40%

- = RPC is but of ofterla

ICP-MS - LC\$

Sample ID: WQ92120-002 Batch: 92120

Analytical Method: 8020B

Matrix: Aqueous Prep Method: 3005A

Prep Date: 05/13/2021 0401

Parameter	Spike Amount (ug/L)	Rosult (ug/L)	_ Q	DII	% Rec	%Rec Limit	Analysis Date
Dissolved Aluminum	109	110		1	106	80-120	05/13/2021 1838
Dissolved Antimony	100	99		1	88	80- 120	05/13/2021 1838
Dissolved Arsenic	100	95		1	95	80-120	05/13/2021 1838
Dissolved Barlum	100	98		1	98	80-120	05/13/2021 1838
Dissolved Cadmium	100	95		1	95	80-120	05/13/2021 1838
Dissolved Celcium	1000	1100		1	106	80-120	05/13/2021 1838
Dissolved Chromium	100	100		1	103	80-120	05/13/2021 1838
Dissolved Gobelt	100	110		1	105	80-120	05/13/2021 1838
Dissolved Copper	100	110		1	107	80-120	05/13/2021 1838
Dissolved Iron	1000	1100		1	105	80-120	05/13/2021 1838
Dissolved Lead	100	110		1	108	80-120	05/13/2021 1838
Dissolved Magnesium	1000	990		1	99	80-120	05/13/2021 1838
Dissolved Manganese	100	100		f	100	80-120	05/13/2021 1838
Dissolved Nickal	100	100		1	104	80-120	05/13/2021 1838
Dissolved Patasslum	1000	1000		1	103	80-120	05/13/2021 1838
Dissolved Selenium	100	89		1	89	80-120	05/13/2021 1838
Dissolved Silver	100	95		1	95	80-120	06/13/2021 1838
Dissolved Sodlum	1000	1000		1	100	80-120	05/13/2021 1838
Dissolved Thallium	100	100		1	104	80-120	05/13/2021 1838
Dissolved Venadium	100	100		1	100	80-120	05/13/2021 1838
Dissolved Zinc	100	100		1	101	80-120	05/13/2021 1838

LOQ = Unit of Quentitation DL = Detection Harit

ND = Not datected at or above the DL

 $J = \text{Bellinetac result} \times LCQ$ and $\succeq DL$

N = Recovery is out of criteria

. P = The RPD between two SC columns exceeds 40%

1 = RSD is out of criteria

 $\dot{\tau} = R^2D$ is out of orliginal

Sample ID: WE10004-006MS

Batch: 92120 Analytical Method: 6020∃ Matrix: Aqueous Prep Mothod: 3005A

Prep Date: 05/13/2021 0401

Parametor	Sample Amount (ug/L)	Spike Amount (ug/L)	Result (ug/L)	Q.	_ Dil	% Rec	%Roc Limit	Analysis Date
Dissolved Aluminum	ND	100	110		1	110	75-125	05/13/2021 1853
Dissolved Antimony	ND	100	100		1	101	75-125	05/13/2021 1863
Dissolved Arsenic	ND	100	97		1	97	75-125	05/13/2021 1853
Dissolved Barium	73	100	170		1	98	75-125	05/13/2021 1853
Dissolved Cadmlum	ND	100	97		1	97	75-125	05/13/2021 1853
Dissolved Calcium	50000	1000	49000	N	10	-75	75-125	05/13/2021 2015
Dissolved Chromium	ИD	100	100		1	100	75-125	06/13/2021 1853
Dissolved Cobalt	ND	100	100		1	102	75-125	05/13/2021 1853
Dissolved Copper	ND	100	100		1	102	75-125	05/13/2021 1853
Dissolved Iron	13	1000	1000		1	103	75-125	05/13/2021 1853
Dissolved Lead	ND	100	100		1	103	75-125	05/13/2021 1853
Djasolved Magnesium	8000	1000	7000		1	99	75-125	05/13/2021 1853
Dissolved Manganese	150	100	260		1	95	75-126	05/13/2021 1853
Dissolved Nickel	2.0	100	100		1	99	75-125	05/13/2021 1853
Dissolved Potasslum	5900	1000	6800		1	85	75-125	05/13/2021 1853
Dissolved Selenium	ND	100	95		1	85	75-125	05/13/2021 1853
Dissolved Silver	ND	100	94		1	₽4	75-125	05/13/2021 1853
Dissolved Sodium	3400	1000	4300		1	85	75-125	05/13/2021 1853
Dissolved Thallium	ND	100	100		1	103	75-125	05/13/2021 1853
Dissolved Variadium	ND	100	99		1	99	75-125	05/13/2021 1859
Dissalved Zinc	ND	100	100		1	101	75-125	05/13/2021 1850

 $LOQ \cong Limit of Quantitation$

DL = Delection Umit

ND = Not detected at priedove (Fo Di.

N ≃ Hecavary is out of critalia.

 $\zeta = \mathsf{Fp}_{\mathsf{S}}(\mathsf{maled}|\mathsf{result} \leq \mathsf{LOQ}|\mathsf{and} \succeq \mathsf{DL})$

 $\mathcal{D}=116$ RPB between two GC columns access 40%

f = RBD is out of orderin

+ = RPG 's cut of order a

Sample ID: WE10034-006MD

Batch: 92120 Analytical Method: 6020B Matrix: Aqueous Prep Method: 3005A

Prop Date: 05/13/2021 0401

Parameter	Sample Amount (ug/L)	Spike Amount (ug/L)	Result (ug/L)	a	DII	% Roc	% RPD	%Rec Limit	% RPD Limit	Analysis Date
Dissolved Aluminum	ND	100	100		1	105	4,8	75-125	20	05/13/2021 1901
Dissolved Antimony	NI.1	100	100		1	103	1.6	75-126	20	05/13/2021 1901
Dissolved Arsenic	ND	100	97		1	97	0.69	75-125	20	05/13/2021 1901
Dissolved Barium	73	100	180		1	102	2.5	75-126	20	05/13/2021 1901
Dissolved Cadmlum	ND	100	99		1	99	1.8	75-125	20	05/13/2021 1901
Dissolved Cafelum	50000	1000	51000		10	87	3.2	75-125	20	05/13/2021 2022
Dissaived Chromlum	ND	100	100		1	100	0.89	75-125	20	05/13/2021 1901
Dissolved Cobalt	ND	100	100		1	103	1.1	75-125	20	05/13/2021 1901
Dissolvod Copper	ND	100	100		1	103	0.66	75-125	20	05/13/2021 1901
Dissolved Iron	13	1000	1000		1	102	0.23	75-125	20	05/13/2021 1901
Dissolved Lead	NL	100	100		1	104	1.4	75-125	20	05/13/2021 1901
Dissolved Magneaium	6000	1000	7200		1	116	2.4	75-125	20	05/13/2021 1901
Dissolved Manganese	150	100	250		1	101	2.4	75-1 2 5	20	05/13/2021 1901
Dissolved Nickel	2.0	100	100		1	100	1.1	75-125	20	05/13/2021 1901
Dissolved Potassium	5900	1000	7000		1	106	3.1	75-125	20	06/13/2021 1901
Dissolved Selenium	ND	100	96		1	96	1.4	75-126	20	05/13/2021 1901
Dissolved Silver	ND	100	94		1	94	0.77	75-126	20	05/13/2021 1901
Dissolved Sodium	3400	1000	4500		1	104	4.2	75-125	20	06/13/2021 1901
Dissolved Thalllum	ND	100	f00		1	104	1.3	75-125	20	05/13/2021 1901
Dissolved Vanad!um	ND	100	100		1	100	0.38	75-125	20	05/13/2021 1901
Dissolved Zinc	ND	100	100		1	102	0.24	75-126	20	05/13/2021 1901

LOG = Limit of Quantitation

DL = Detection Limit

ND n N:x datacted at an above the Du

J = Estimatac result < LOG and ≥ DL

* = R&D is out of criteria

N = Recovery la out of organia

١

 $P\cong \mathsf{Tha}|\mathsf{RPD}|\mathsf{balween}|\mathsf{lwo}|\mathsf{SC}|\mathsf{columns}|\mathsf{sxcaeds}|\mathsf{40}\%$

-- ∋ RPD is out of ofter a

Sample ID: WQ92127-001

Matrix: Solid Prep Method: 3050B

Prep Date: 05/14/2021 0404

Batch: 92127 Analytical Method: 6020B

Parameter	Result	Q	pil	LOQ	DL	Units	Analysis Date
Aluminum	ND		1	10	2.6	rng/kg	05/14/2021 1110
Antimony	ND		1	D.50	0.20	mg/kg	05/14/2021 1110
Arsenia	ND		1	0.50	0.20	mg/kg	05/14/2021 1110
Barium	ND		1	1.3	0.31	mg/kg	05/14/2021 1110
Berylllum	ND		1	0.10	0.034	mg/kg	05/14/2021 1110
Gadmlum	ND		1	0.13	0.025	mg/kg	05/14/2021 1110
Calcium	ND		1	100	30	mg/kg	05/14/2021 1110
Chromium	0.58	J	1	1.3	0.65	mg/kg	05/14/2021 1110
Cobalt	ND	_	1	1.3	0.30	mg/kg	05/14/2021 1110
Соррег	ND		1	1.3	0.33	mg/kg	05/14/2021 1110
Iron	ND		t	13	2.5	rng/kg	05/14/2021 11:10
Lead	ND		1	0.25	0.068	rng/kg	05/14/2021 1110
Magnesium	ND		1	100	25	rng/kg	05/14/2021 1110
Manganese	CN		1	1.3	0.36	mg/kg	05/14/2021 1110
Nickel	ND		1	1.3	0.30	mg/k g	05/14/2021 1110
Potassium	ND		1	100	25	mg/kg	05/14/2021 1110
Selenium	ND		1	1.3	0.47	nig/kg	05/14/2021 1110
Silver	ND		1	0.25	0.060	mg/kg	05/14/2021 1110
Sodium	ND		1	100	37	my/kg	05/14/2021 1110
Thallium '	ND		1	0.13	0.030	mg/kg	05/14/2021 1110
	ND		1	1.3	0.25	rng/kg	05/14/2021 1110
Vanadium Zino	ND		1	2.5	0.50	mg/kg	05/44/2021 1110

 $I_{\nu}Q = \operatorname{Lim}_{\nu} \operatorname{of} \operatorname{Quantillation}$

ND = Not detected at or above the Ω^{\dagger}

N = Recovery is out 6° oftents.

DL = Datention Links

J = Estimated result < LOQ and $\gtrsim Dt$

1 - RSD is out of criteria.

P = The RPD between two GC columns excoods 40%.

 $\#\pi$ RPD is out of or tarie.

Sample ID: WQ92127-002

Batch: 92127 Analytical Method: 6020B Matrix: Solid Prep Method: 3050B

Prop Date: 05/14/2021 0404

Perameter	Spike Amount (mg/kg)	Result (mg/kg)	Q.	וום	% Rec	%Rec Limit	Analysis Date
Aluminum	60	53		1	105	80-120	05/14/2021 111B
Antimony	60	49		1 .	97	80-120	05/14/2021 1116
Arsonic	50	50		1	100	80-120	06/14/2021 1116
Barlum	50	52		1	103	80-120	05/14/2021 1116
Beryllium	50	51		1	101	80-120	05/14/2021 1116
Cadmium	50	51		1	102	80-120	05/14/2021 1118
Calcium	500	560		1	111	80-120	05/14/2021 1116
Chromium	50	51		1	102	80-120	05/14/2021 1116
Cobalt	50	51		1	101	80-120	05/14/2021 1116
Copper	60	51		1	101	80-120	05/14/2021 1116
Iron	500	540		1	108	80-120	05/14/2021 1116
Lead	50	49		1	99	80-120	05/14/2021 1116
Magnesium	500	530		1	106	80-120	05/14/2021 1116
Manganese	50	51		1	101	80-120	05/14/2021 1116
Nickel	50	50		1	100	80-120	05/14/2021 1116
Potassium	500	560		1	112	80-120	05/14/2021 1116
Selenium	50	46		1	93	80-120	06/14/2021 1116
Sliver	50	52		1	104	80-120	05/14/2021 1116
Sodlum	500	520		1	105	80-120	05/14/2021 1116
Thellion	50	50		1	100	80-120	05/14/2021 1116
Vanadium	50	51		1	102	80-120	05/14/2021 1118
Zind	50	47		1	95	80-120	05/14/2021 1118

LOQ = Limit of Quantillation

DL = Dateotion Limit

ND = Not detected at an above the DL

J = Estimated result < LOQ and \geq OL

*=R8D sicul of offera

 $N\cong \mathsf{Recovery} \mathsf{\,lis\,\,out\,cf\,\,orterla}$

P = The RPD between two SC cours exceeds 40%

+ = RFC is out of afterta

Sample ID: WE10034-001MS

Batch: 92127

Matrix: Solid Prep Method: 3050B

Prep Date: 06/14/2021 0404

Analytical	Method:	8020B

Parameter	Sample Amount (mg/kg)	Spike Amount (mg/kg)	Result (mg/kg)	Q	Dji	% Rec	%Roc Limit	Analysis Dato
Aluminum	43000	54	48000	N	10	8530	75-125	05/14/2021 1127
Antimony	ИÜ	54	26	N	1	47	75-125	05/14/2021 1237
Arsenic	1.5	54	50		1	89	75-125	05/14/2021 1237
Barlum	160	54	250	N	1	172	75-125	05/14/2021 1237
Beryllum	0.37	54	26	N	1	46	75-125	05/14/2021 1207
Cedmlum	0.078	54	5 5		1	101	75-125	05/14/2021 1237
Calcium	820	540	1800	N	1	180	75-125	05/14/2021 1237
Chrom.lum	37	64	79		1	76	75-125	05/14/2021 1237
Cobalt	11	54	81		1	91	75-125	05/14/ 2 021 1237
Copper	28	54	90		1	118	75-125	05/14/2021 1237
Iron	41000	540	31000	N	10	-1970	75-126	05/14/2021 1127
Lead	72	54	75		1	98	75-126	05/14/2021 1237
Magnesium	2100	540	3000	N	1	1 51	75-125	05/14/2021 1237
Mangarese	390	54	370	N	1	-25	75-126	05/14/2021 1237
Nickel	14	54	65		1	93	75-125	05/14/2021 1237
Potassium	2700	540	4000	Ν	1	249	75–125	05/14/2021 1237
Selenlum	0.51	54	49		1	89	75-125	05/14/2021 1237
Silver	NI3	54	55		1	102	75-125	05/14/2021 1237
Sodium.	ND .	640	41C		1	75	75-125	05/14/2021 1237
Thallium	0.24	64	55		1	101	75-125	05/14/2021 1237
Vanadium	63	64	100	N	1	71	75-125	05/14/2021 1237
Zinc	54	54	120		1	120	75-125	05/14/2021 1237

notice the sufficient to $\mathcal{Q}(G) = \prod_{i \in G} \mathcal{Q}(G)$

ND = Not detected at or above the CIU

N = Recovery is put of criter a

Du - Detaction Flims

 $J = Estimated \ rospill \leq LOQ \ and \geq DL$

 $P = f^*$ e RPD between two SD columns exceeds 40%

• = RSD is out of criteria

-¬RPD s out of otherie

Sample ID: WE10034-001MD

Batch: 92127 Analytical Method: 6020B Matrix: Solid Prep Method: 3050B

Prop Date: 05/14/2021 0404

Parameter	Sample Amount (mg/kg)	Spike Amount (mg/kg)	Result (mg/kg)	Q	DII	% Rec	% RPD	%Rec Limit	% RPD Limit	Analysis Date
Aluminum	43000	55	48000	N	10	8800	0.35	75-125	20	05/14/2021 1133
Antimorry	ND	66	26	Ν	1	48	1.9	75-125	20	05/14/2021 1243
Arsanit;	1.5	55	50		1	89	0.41	78-126	20	05/14/2021 1243
Barium	160	55	240	N	1	145	5.8	75-126	20	05/14/2021 1243
Beryllium	0.37	55	27	Ν	1	49	6.1	75-126	20	05/14/2021 1243
Cadmium	0.078	55	56		1	102	1,2	75-125	20	05/14/2021 1243
Calcium	820	550	1400	+	1	100	28	75-126	20	05/14/2021 1243
Chromium	37	55	88		1	92	11	75-125	20	05/14/2021 1243
Cobalt	11	ნ ნ	61		1	91	0.24	75-125	20	05/14/2021 1243
Copper	26	55	84		1	107	6.3	75-125	20	05/14/2021 1243
Iron	41000	550	37000	Ν	f0	-797	19	76-125	20	05/14/2021 1133
Lead	22	66	77		1	101	2.6	75-125	20	05/14/2021 1243
Magnesium	2100	660	2800	N	1	127	4.3	75-125	20	05/14/2021 1243
Manganese	390	66	420	N	1	56	11	75-125	20	05/14/2021 1243
Nickel	14	55	65		1	94	1.3	75-125	20	05/14/2021 1243
Potassium	2700	550	4100	Ν	1	266	2.5	75-125	20	05/14/2021 1243
Selenium	0.51	55	50		1	91	2.0	75-125	20	05/14/2021 1243
Silver	ND	55	66		1	102	0.56	75-125	20	05/14/2021 1243
Sodium	ND	550	410		1	76	1.3	75-125	20	05/14/2021 1243
Thallium	0.24	55	56		1	102	1.8	75-125	20	05/14/2021 1243
Vanadlum	63	55	110		1	83	6.6	75-125	20	05/14/2021 1243
Zinc	54	55	110		1	100	9.3	75-125	20	05/14/2021 1243

LOC - Emit of Quantilation

Duin Delection Limit

ND = Not detected at or above the DL

 $J = Estimated result < LOG and <math display="inline">\geq DL$

N + Racovery is out of criteria

P = The RPD bolycon two GC columns expects 40%

* = RSD is out of oriter a

+ = RPD is out of often a

ICP-MS - MB

Sample ID: WQ92064-001 Batch: 92064

Analytical Method: 7471B

Matrix: Solld Prop Method: 7471B

Prep Date: 05/12/2021 1545

Parameter	Result	<u>۾</u>	וום	LOQ	DL.	Units	Analysis Date
Mercury	ND		1	0.083	0.020	mg/kg	0 5/13/20 2 % 1557

LOQ - Limit of Quantitation

ND - Not detected at or above the DL

N = Recovery is out of criteria

DL = Detection Umit

 $J \equiv Baltima.ed$ result s LOQ and $\geq DL$

 $\beta \mp T_{\rm HB}$ RPD between two GG columns exceeds 70%

* = RSD is out of oriter a

+ ≃ RPD is out of criteria

Page Analytical Services, LLC (formariy Sheaty Environmental Services, Inc.) 108 Vantaga Point Onivo - West Columbia, SC 29172 (803) 791-9700 - Fax (803) 791-9111 - www.pacclabs.com

ICP-MS - LCS

Sample ID: WQ92064-002

Batch: 92064 Analytical Method: 7471B

Matrix: Solid Prep Method: 7471B

Prep Dato: 05/12/2021 1545

Parameter	Spike Amount (mg/kg)	Result (mg/kg)	Q	Dil	% Rec	%Rec Limit	Analysis Date
Mercury	0.83	0.89		'1	108	80-120	05/13/2021 1600

LOG - Unit of Quarties on

Du - Dalecton Limit

NO - Not delected at or above the DL

N = Racovery is but of criteria.

a = Eetimalod rosolt < LOQ and \geq Du

P = The RPD between two GC columns exceeds 40%

f = RSO is out of criteria.

r = RPD is out of critade

ICP-MS - MS

Sample ID: WE10034-001MS

Batch: 92064

Analytical Method: 7471B

Matrix: Solid
Prep Method: 7471B

Prep Date: 05/12/2021 1645

Parameter	Sample Amount (mg/kg)	Spike Amount (mg/kg)	Result (mg/kg)	a	DIE	% Rec	%Rec Limit	Analysis Date
Mercury	0.028	0.95	1.1		1	114	80-120	05/13/2021 1611

LOG = I, mit of Quantilation

DL - Beteckin Limit

ND = Not delected at or above the DL

 $J \cap E$ allmated result < LCQ and $\geq DL$

 \bullet = RSD is but of afterta

N = Recovery le out of pritoria

PITTLE RPD between lyd GC columns exceeds 40%

== RPD is out of criter a

ICP-MS - MSD

Sample ID: WE10034-001MD

Batch: 92064

Analytical Method: 7471B

Matrix: Solid Prep Method: 7471B

Prep Date: 05/12/2021 1545

Parameter	Sample Amount (mg/kg)	Spike Amount (mg/kg)	Result (mg/kg) Q	Dil	% Rec	% RPD	%Rec Limit	% RPD Limit	Analysis Date
Mercury	0.028	0.96	1.1	1	116	3.3	90-120	20	06/13/2021 1613

1.00 = Nmit of Quantitation

NO - Not detacted at or above the Ou

N = Recovery is out of criter's

DU = Detaction Limit

 $\delta \simeq \text{Estimated result} < 1.00$ and $\simeq \text{DL}$

P = The RPD between two GC columns gaceeds 40%

' = RSD is out of orbar a

+ = RPC is out of within a

CVAA - MB

Sample ID; WQ92149-001

Batch: 92149

Matrix: Aqueous

Prep Method:

Prep Date: 05/13/2021 1224

Analytical Method: 7470A

Parameter	Result	Q	<u>Dil</u>	LOQ	DL	Units	Analysis Data
Diesolved Mercury	ND		1	0.00020	0.000091	mg/l.	05/13/2021 1819

 $LOQ \Rightarrow Limit of Quantifation$ DL = Date:dion Limit ND = Not distorted at or above the DL

 $J = \text{Ballmalod result} \times LCQ \text{ and } \times DL$

1 = RSD is aut of oftens

N - Recovery is not of criteria.

 $\mathcal{P} = The \mathcal{R}/4D$ between two GC columns exceeds 40%

+ = RPD is out of otherly

CVAA - LCS

Sample ID: WQ92149-002

Batch: 92149 Analytical Method: 7470A Matrix: Aqueous

Prep Method:

Prop Date: 05/13/2021 1224

Parameter	Spike Amount (mg/L)	Result (mg/L)	Q	Dli	% Rec	%Rec Limit	Analysis Date
Dissalved Mercury	0.0020	0.0019		1	98	80-120	05/13/2021 1822

LCO = Limit of Quantilation

DL = Datec, on Limit

ND = Not detected at or spove the DL

 $J = \text{Estimated result} \times \text{LOG}$ and $\geq \text{DL}$

N = Recovery is out of stitarla

P = The RPD belongs (wd GC estumns exceeds 40%)

* = RSC is out of oritor a

- = RPD is out of or tar a

CVAA - MS

Sample ID: WE10034-007MS

Batch: 92149 Analytical Mothod: 7470A Matrix: Aqueous

Prep Method:

Prep Dato: 05/13/2021 1224

Parameter	Sample Amount (mg/L)	Spike Amount (mg/L)	Result (mg/L)	Q.	bji	% Rec	%Rec Limit	Analysis Date
Dissolved Mercury	ND	0.0020	0.0020		1	98	85-116	05/10/2021 1830

LOG = Limit of Quantitation Di. = Delaction Umit

ND = Natidelectac at chiebove the DL

 $N=R_{0}$ covery a out of order α

 $J = \mathsf{Es:} \mathsf{Matedirecall} \leq \mathsf{LOC} \; \mathsf{and} \geq \mathsf{DL}$

P = The RPC between two GC columns expects 40%

• = RSD is sail of criteria.

t = RPD a but of criteria

CVAA - MSD

8ample ID: WE10034-007MD

Batch: 92149 Analytical Mothod: 7470A Matrix: Aqueous

Prep Method:

Prep Date: 05/13/2021 1224

	Sample Amount	Spike Amount	Result				_	%Rec	% RPD	
Parameter	(mg/L)	(mg/L)	(mg/L)	Q	D 11	% Rec	% RPD	Limit	Limit	Analysis Date
Dissolved Mercury	Nυ	0.0020	0.0020		1	อล	1.4	85-115	20	05/13/2021 1832

LOG - Limit of Quantitation

ND = Not detected all or above the DL

N = Recovery is out of or tarle

OLin Cetebban Limit

 $J\equiv$ Estimated result < LOQ and \succeq QL.

P = Taic RPC between two GC columns exceeds 40%

* - R3D is out of criteria

+ = RFO is out of citle/ia

Chain of Custody and Miscellaneous Documents

PACE ANALYTICAL SERVICES, LLC

Pace Analytical	PACE 10s Vertas Telephone	PACE ANALYTICAL SERVICES, LLC 108 Vertes Poid Dins - West Columbia, SC 23172 Telephone No. 808-783-3709 Fex No. 808-791-9111 www.perstable.com	SERVICES, I let Columbia, SC Fac No. 803-7: becom	1.C 25172 91-9111	Number	122100
\$ 5.th	Report to Control D C D C D C D	Mostry		Yekephone No. / Estre?	S. A. Elaine	Charge No.
10000 (000 (000)	Sungha is Standama	η ,		Analysia (A hach fist if more analysis's meaning)	op's manches	
300 00 00 00 00 00 00 00 00 00 00 00 00	C Principalities	WWW.		1/1/1	 	
اند. دور		m Sawi	*~3	ippoi ibor Sign		
のころうなし、一つのかに			No of Cappings	15 (15 (#*************************************
Contains trees escribing to the teachers of the contains	Contractor University	FOREIT FOREIT WORKEY FRANCE FR	River gu dead HOM KOM	991 <u>9</u>	*********	Henral No. / Obster 3.D.
2-2-5	-21 143 G	7	1-	3 1/4 ²		
ے، در	0 h h l					
8-3 (2)	11 Och 1					
(S) h-8	1300		- 0240			
8-5 (4) (2)	15/0	>	·>			
- M. A.	13 60 14	60	74	x x K		Botton all all the wash
(-/m^	11000 1 11)		54 45 WALLE 645
(-M-3	11130		1	>	-4 (20%)	-
J-7/1-1)	A 1 0 24			8		
S-MJ	/ 1050 WW	>	>		- Links	
Tanf Armund Thro Requires (Price Sab express) required for equality TAL)	und TMT) Stangers Dispuses.		Research Present International Library (12)	Manay D ■Sad J Hat English D	OC Respitationers (Specify)	s (S) e-thy
2. Resignation by M. A. M. C.	35 (0) [5-0]-5	A1000	() Mass		7. S.	7. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
= The Hour	12.45.21	Time 7. Reported	100	()		Time
3. Hambalenco by	- A	Time 3. Received by	- SF_Date			Dane
A Factinguished by		Takey 4 Labour	4 Laboratory received by	136	10 to	27.1
PAGE: All samples are relatined for faw weeks from receipt unless other armingenterus are made.	our weeks from receipt to see made.	LAN USE GREY Recovered on Ke	NAW USE GRAZY HIROWAYS OR KIE KOROKS (1955)	No to Pack	1. 2. S.	Temp Blank J. T. T. N
DISTRIBUTION: WHITE & PELOTIFICATION IS INCIDENCE WITH SEMPLING.	Semple(8): PRVK-Federicans Cours)		Darie	Caraman Mandan Minatellia

PACE ANALYTICAL SERVICES, LLC

Pace Analytical

Samples Receipt Checklist (SRC) (ME0018C-15) Issuing Authority: Page ENV - WCOI.

Revised:9/29/2020 Page 1 of 1

Sample Receipt Checklist (SRC)

Client: BLB	Confer Inspected by/date: XSC / 85/16/2021 Lot #: Will 2034
Means of recoint: Pe	
Yes VNo	Were custody seats present on the cooler?
Yes No Z NA	2. If custody senis were present, were they intact and unbreton?
off Strip ID: NA	Unterline Strip III: NA Tested by: NA
Orlidnal temparature unor	receipt / Darlynd (Corrected) reioperature upon mostpi: 950lid Snap-Cup ID: 21-445
23 /23 °C NA /N/	A oc NA /NA oc NA /NA oc
Method:	Blank [Against Bottles IR Gue ID; \$ IR Gon Correction Factor: 6 °C
Method of contant: X V	Wet fee Lile Packs Dry Ica Lil None
TYES NO DINA	 If temperature of any cooler excanded 6.0°C, was Project Manager Notified?
]'' ' ''	PM was Notified by: phone / email / face-to-face (circle one).
Yes No NA	4. Is the commercial courier's packing slip attached to this form?
7 Yes L No	Were proper englady procedures (rollinguished/received) fullowed?
▼Yes □ No	6. Were sample IDs listed on the COC?
Yes □ No	7. Were sample IDs listed on all sample containers?
√ Yes □ No	8. Was collection date & time listed on the COC?
▼ Yes □ No	9. Was collection date to time listed on all sample containers?
▼ Yes □ No	10. Did all container label information (II), date, time) agree with the COC?
Yes No	11. Were tests to be performed listed on the COC?
177	12. Did all samples orrive in the proper containers for each just and/or in good condition
¥ Yos □ No	(unbroken, litis on, etc.)?
Yes UNO	13. Was adequate sample volume available ⁹
Yea / No	14. Were all samples received within ½ the holding time or 48 hours, whichover comes first?
Yes L No	15. Were any samples costainers missing/excess (circle one) samples Not listed on COC?
	1.6 P. 3103A and DOV 198 complete speed bubbles represent beings size? (12"or from in disroster)
Yes No MNA	in any of the VOA visits?
Yes No ZNA	17. Were all DRO/metals/nurrient samples received at a pel of < 2?
Yes LINO ZNA	18. Were all counties amples received at a pH > 12 and sulfide samples received at a pH > 97
	THE Ware all profite falls NH-700 N/complete heart [625, 17628, 3 (\$0.5)me/L) sanities 1790 of
AM Vos UND Vos	residual chlorine?
["]v- []v- []v-	29. Were client remarks/requests (i.e. requested dilutions, MS/MSD designations, etc)
UY•s □No ☑NA	partecula franscribed fight the COG little (the estatuent section in parties).
Yes V No	21. Was the quote number listed on the container label? If yes, Quote #
	Must be completed for any sample(s) incorrectly preserved or with headspace.)
	were received incarceally preserved and were adjusted accordingly
Sample(3) No. in sample receiving with	
Time of preservation NA	If more than one preservative is needed, please note in the comments below.
Sample(s) NA	were received with bubbles >6 mm in diameter.
Samples(s) NA	wore received with TRC > 0.5 mg/L (If #19 is no) and were
adjusted accordingly in sa	unple receiving with sodium followillate (Na ₂ S ₁ O ₃) with Skeaty ID: MA
	A PLANTAGE
SR barcode labels applied	1 by: KSC Dute: 05/19/2021
Comments:	
	<u> </u>
	<u> </u>
·	

TOWN OF WAYNESVILLE BOARD OF ALDERMEN REQUEST FOR BOARD ACTION

Meeting Date: June 22, 2021

SUBJECT: Board discussion concerning adjustments to the Downtown Municipal Service District

AGENDA INFORMATION:

Agenda Location: New Business

Item Number: E16

Department: Board of Aldermen

Contact: Anthony Sutton, Alderman **Presenter:** Anthony Sutton, Alderman

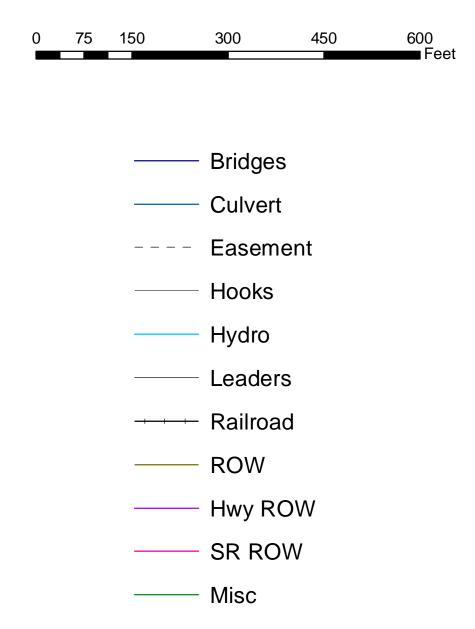
BRIEF SUMMARY:

The Board has been approached by some members of the public who own businesses within the Downtown Municipal Service District (MSD) that believe their businesses do not benefit from the extra tax levied on properties within the MSD. Alderman Anthony Sutton would like to review the current MSD map and discuss with the Board if any changes should be made, specifically, if businesses that do not enter from or exit onto Main Street should be included on the map.

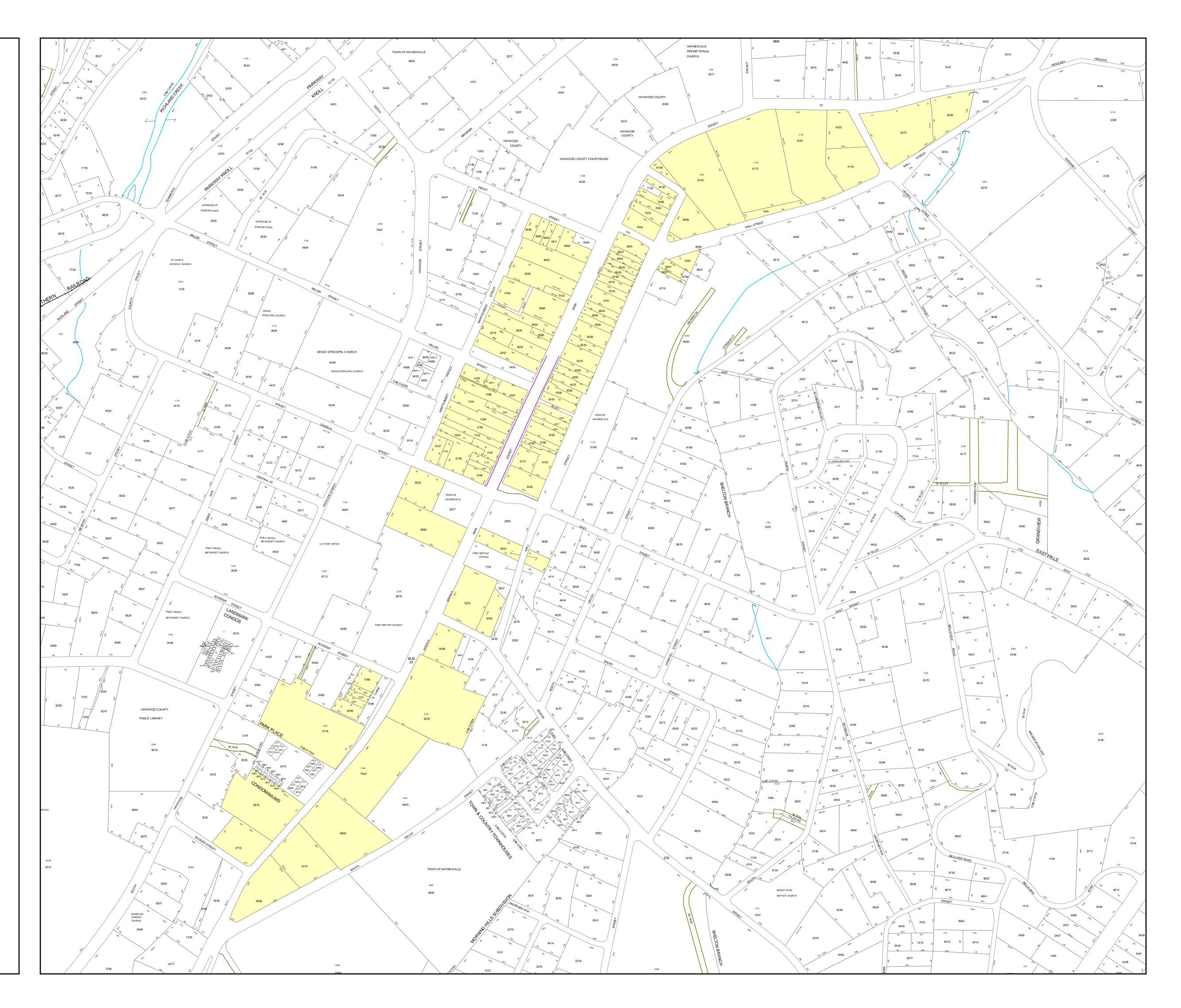

MOTION FOR CONSIDERATION:

FUNDING SOURCE/IMPACT:

ATTACHMENTS:


1. Downtown Municipal Service Districts Maps

MANAGER'S COMMENTS AND RECOMMENDATIONS:



Waynesville MSD

THIS MAP IS PREPARED FOR THE INVENTORY OF REAL PROPERTY FOUND WITHIN THIS JURISDICTION, AND IS COMPILED FROM RECORDED DEEDS, PLATS, AND OTHER PUBLIC RECORDS AND DATA. USERS OF THIS MAP ARE HEREBY NOTIFIED THAT THE AFOREMENTIONED PUBLIC PRIMARY INFORMATION SOURCES SHOULD BE CONSULTED FOR VERIFICATION OF THE INFORMATION CONTAINED ON THIS MAP. HAYWOOD COUNTY ASSUMES NO LEGAL RESPONSIBILITY FOR THE INFORMATION CONTAINED ON THIS MAP.

Printing Date: Friday, January 22, 2010
File: WaynesvilleMSD.mxd
Coordinate System:
NAD 1983 StatePlane North Carolina FIPS 3200 Feet
Operating System: Microsoft Windows XP Professional
ArcMap Build Number: 9.3.1770
Haywood County GIS

Municipal Service District

Miles